当前位置:首页 > s问问 >

初一上册数学100道题(带答案)

  • s问问
  • 2021-11-03

聊到上册,我们很多人都知道,有朋友问初一上册数学应用题大全及答案,还有人问初一上册100道数学题,这到底是咋回事?事实上初一数学100道选择题及答案呢,下面是小编精心为你们整理的初一上册数学100道题(带答案),下面就和大家分享一下吧

初一上册数学100道题(带答案)

(初一上册)

一、 初一质量监测:

1、勇士排球队四场比赛的成绩(五局三胜制)是1:3,3:2, 0:3, 3:1,总的净胜局数是多少?P6页

解:1+3+3-(3+2+3+1)

=7-9

=-2

答:总的净胜局数是-2

2、下列各数是10名学生的数学考试成绩,先估算他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估值能力。P6页

82, 83, 78, 66, 95, 75, 56, 93, 82, 81

我估算他们的平均成绩为80分。

解:(82+83+78+66+95+75+56+93+82+81)÷10

=791÷10

=79.1(分)

答:他们的平均成绩为79.1分。

3、当温度每上升1°C时,某种金属丝伸长0.002mm。反之,当温度每下降 1°C时,金属丝缩短0.002mm。把15°C的金属丝加热到60°C,再使它冷却降温到5°C,金属丝的长度经历了怎样的变化?最后的长度比原长度伸长多少?P7页

解:⑴、(60-15)×0.002=0.09(mm)

⑵、0.09-(60-5) ×0.002

=0.09-0. 11

=-0.02(mm)

答:最后的长度比原长度伸长-0.02mm。

4、一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿千米。试用科学计数法表示1个天文单位是多少千米(保留4个有效数字)。P7页

解:1.4960(亿千米)保留4个有效数字

≈1.496×108(千米)

∴一个天文单位约是1.496×108千米。

不等式与不等式组(应用题)

5、某商店以每辆250元的进价购入200辆自行车,并以每辆275元的价格销售。两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出多少辆自行车?P54页

解:设这时至少已售出X辆自行车。

275X﹥250×200

275X﹥50000

X﹥181.11......

∵ X为整数

∴ X=182

答:这时至少已售出182辆自行车。

6、采石场爆破时,点燃导火线后工人要在爆破前转移到400米外的安全区域。导火线燃烧速度是1厘米/秒,工人转移的速度是5米/秒,导火线至少需要多长?

解:设导火线至少需要X米,得

400÷5≤X/0.01

80≤X/0.01

X≥0.8

答:导火线至少需要0.8米。

7、一艘轮船从某江上游的A地匀速驶到下游的B地用了10小时,从B地匀速返回A地用了不到12小时,这段江水流速为3千米/时,轮船往返的静水速度V

不变,V满足什么条件?P54页

解:设静水速度为V,得

(3+V)×10 ÷ (V-3)﹥10

(3+V)×10 ÷ (V-3)﹤12

解:V﹥33

答:静速V﹥33

◆8、苹果的进价是每千克1.5元,销售中估计有5%的苹果正常损耗。商家把售价至少定为多少,就能避免亏本?P54页

解:设商家把售价至少定为X元。

1.5≤(100%-5%)X

1.5≤0.95X

X≥1.5789

答:商家把售价至少定为1.58元,就能避免亏本。

◆9、某工厂前年有员工280人,去年经过结构改革减员40人,全厂年利润至少增加100万元,人均创利至少增加6000元,前年全厂利润是多少?

解:设前年全厂利润为X万元。P55页

X÷280+0.6﹤(X+100)÷(280-40)

6X+1008﹤7(X+100)

- X﹤-1008+100

- X﹤-308

X﹥308

答:前年全厂利润是308万元。

◆10、2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?(每年均按365天计算)P55页

解:设2008年空气质量良好的天数要比2002年至少增加X天。

X≥365×(70%-55%)

X≥365×15%

X≥54.75

答:2008年空气质量良好的天数要比2002年至少增加55天。

11、有一个两位数,如果把它的个位数字a和十位数字b对调,那么什么情况下得到的两位数比原来的两位数大?什么情况下得到的两位数比原来的两位数小?什么情况下得到的两位数等于原来的两位数?P55页

解: 10a+b﹥10b+a (1)

10b+a﹥10a+b (2)

10a+b=10b+a (3)

a﹥b (1)

b﹥a (2)

a =b (3)

∴ (1)、当a﹥b时,得到的两位数比原来的两位数大

(2)、当 b﹥a时,得到的两位数比原来的两位数小

(3)、当 b=a时,得到的两位数等于原来的两位数

12、某次知识竞赛有20道题,每一题答对得10分,答错或不答都扣5分。小明得分要超过90分,他至少要答对多少道题?P55页

解:设他至少要答对X道题。

10X-(20-X) ×5﹥90

10X-100+5X﹥90

15X﹥190

X﹥12.66……

∵X为整数

∴X=13

答:他至少要答对13道题

13、一件由黄金与白银制成的首饰重a克,商家称其中黄金含量不低于90%,黄金与白银的密度分别是19.3g/cm3与10.5g/cm3,列出不等式表示这件首饰的体积应满足什么条件。P56页

(提示:质量=密度×体积)

解:V﹤0.9a÷19.3+0.1a÷10.5

◆14、甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。顾客怎样选择商店购物能获得更大优惠?P56页

解:设顾客的消费金额为X元

甲 100+(X-100)×0.9

乙 50+(X-50)×0.95

∵ 甲 ﹥ 乙

∴ 100+(X-100)×0.9﹥50+(X-50)×0.95

X﹤150

如:X﹤50时,在甲、乙店买都不优惠

当50﹤X﹤100时,在乙店买优惠

当100﹤X﹤150时,在乙店买优惠

当X﹥150时,在甲店买优惠

15、一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?P60页

解:设李永每天读(X+3)页,张力每天读X页

7X﹤98 (1)

7(X+3)﹥98 (2)

X﹤14 (1)

X﹥11 (2)

∴ 不等式解集为11﹤X﹤14

∵ X为整数

∴ X=12,13

答:张力平均每天读12,13页书。

16、3个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务。每个小组原先每天生产多少件产品?P60页

解:设每个小组原先每天生产X件产品。

3X×10﹤500 (1)

3(X+1)×10﹥500 (2)

X﹤50/3 (1)

X﹥47/3 (2)

∴ 47/3 ﹤X﹤50/3

∵ X为整数

∴ X=16

答:每个小组原先每天生产16件产品。

17、某商品的售价是150元,商家售出一件这种商品可获利润是进价的10%~20%,进价的范围是什么(精确到1元)?P62页

解:设进价X元。

X+10%X=150 (1)

X+20%X=150 (2)

X≈136 (1)

X=125 (2)

∴ 进价范围是125元~136元。

◆18、用每分钟可抽1.1吨水的A型抽水机来抽水,半小时可以抽完;如果用B型抽水机,估计20分到22分可以抽完。B型抽水机比A型抽水机每分钟多抽多少吨水?P63页

解:设B型抽水机每分钟可抽X吨水。

20≤1.1×30/X≤22

20X≤1.1×30

22X≥1.1×30

20X≤33

22X≥33

X≤1.65

X≥1.5

∴ 1.5≤X≤1.65

1.5-1.1=0.4

1.65-1.1=0.55

∵设B型抽水机比A型抽水机每分钟多抽Y吨水。

∴0.4≤Y≤0.55

答:B型抽水机比A型抽水机每分钟多抽多少0.4~0.55吨水。

◆19、把一些书分给几个学生,如果每人分3本书,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。这些书有多少本?学生有多少人?P64页

解:设这些书有X本,学生有Y人。

3Y+8=X (1)

5(Y-1)+3=X (2)

解: 3Y+8=X (1)

5Y-X =2 (2)

(2)-(1)得2Y=10

Y=5

把Y=5代入(1)得

15+8=X

X=23

∴ X=23

Y=5

答:这些书有23本?学生有5人?

列方程解应用题

1、运送29.5吨煤,先用一辆载重4吨汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?

解:设还要运x次才能完 。

29.5-3×4=2.5x

17.5=2.5x

x=7

答:还要运7次才能完

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

解:它的高是x米

x(7+11)=90*2

18x=180

x=10

它的高是10米

3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?

这9天中平均每天生产x个

9x+908=5408

9x=4500

x=500

这9天中平均每天生产500个

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?

乙每小时行x千米

3(45+x)+17=272

3(45+x)=255

45+x=85

x=40

乙每小时行40千米

5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

平均成绩是x分

40*87.1+42x=85*82

3484+42x=6970

42x=3486

x=83

平均成绩是83分

6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

平均每箱x盒

10x=250+550

10x=800

x=80

平均每箱80盒

7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?

平均每组x人

5x+80=200

5x=160

x=32

平均每组32人

8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?

食堂运来面粉x千克

3x-30=150

3x=180

x=60

食堂运来面粉60千克

9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?

平均每行梨树有x棵

6x-52=20

6x=72

x=12

平均每行梨树有12棵

10、一块三角形地的面积是840平方米,底是140米,高是多少米?

高是x米

140x=840*2

140x=1680

x=12

高是12米

11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?

每件儿童衣服用布x米

16x+20*2.4=72

16x=72-48

16x=24

x=1.5

每件儿童衣服用布1.5米

12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?

女儿今年x岁

30=6(x-3)

6x-18=30

6x=48

x=8

女儿今年8岁

13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

需要x时间

50x=40x+80

10x=80

x=8

需要8时间

14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?

苹果x

3x+2(x-0.5)=15

5x=16

x=3.2

苹果:3.2

梨:2.7

15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?

甲x小时到达中点

50x=40(x+1)

10x=40

x=4

甲4小时到达中点

16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。

乙的速度x

2(x+15)+4x=60

2x+30+4x=60

6x=30

x=5

乙的速度5

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?

原来两根绳子各长x米

3(x-15)+3=x

3x-45+3=x

2x=42

x=21

原来两根绳子各长21米

18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?

每只篮球x

7x+10x/3=248

21x+10x=744

31x=744

x=24

每只篮球:24

每只足球:8

1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?

还要运x次才能完

29.5-3*4=2.5x

17.5=2.5x

x=7

还要运7次才能完

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

它的高是x米

x(7+11)=90*2

18x=180

x=10

它的高是10米

3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?

这9天中平均每天生产x个

9x+908=5408

9x=4500

x=500

这9天中平均每天生产500个

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?

乙每小时行x千米

3(45+x)+17=272

3(45+x)=255

45+x=85

x=40

乙每小时行40千米

5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

平均成绩是x分

40*87.1+42x=85*82

3484+42x=6970

42x=3486

x=83

平均成绩是83分

6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

平均每箱x盒

10x=250+550

10x=800

x=80

平均每箱80盒

7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?

平均每组x人

5x+80=200

5x=160

x=32

平均每组32人

8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?

食堂运来面粉x千克

3x-30=150

3x=180

x=60

食堂运来面粉60千克

9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?

平均每行梨树有x棵

6x-52=20

6x=72

x=12

平均每行梨树有12棵

10、一块三角形地的面积是840平方米,底是140米,高是多少米?

高是x米

140x=840*2

140x=1680

x=12

高是12米

11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?

每件儿童衣服用布x米

16x+20*2.4=72

16x=72-48

16x=24

x=1.5

每件儿童衣服用布1.5米

12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?

女儿今年x岁

30=6(x-3)

6x-18=30

6x=48

x=8

女儿今年8岁

13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

需要x时间

50x=40x+80

10x=80

x=8

需要8时间

14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?

苹果x

3x+2(x-0.5)=15

5x=16

x=3.2

苹果:3.2

梨:2.7

15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?

甲x小时到达中点

50x=40(x+1)

10x=40

x=4

甲4小时到达中点

16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。

乙的速度x

2(x+15)+4x=60

2x+30+4x=60

6x=30

x=5

乙的速度5

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?

原来两根绳子各长x米

3(x-15)+3=x

3x-45+3=x

2x=42

x=21

原来两根绳子各长21米

18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?

每只篮球x

7x+10x/3=248

21x+10x=744

31x=744

x=24

每只篮球:24

每只足球:8

1、运一批货物,一直过去两次租用这两台大货车情况:第一次 甲种车2辆,乙种车3辆,运了15.5吨 第二次 甲种车5辆 乙种车6辆 运了35吨货物 现租用该公司3辆甲种车和5辆乙种车 如果按每吨付运费30元 问货主应付多少元

解:设甲可以装x吨,乙可以装y吨,则

2x+3y=15.5

5x+6y=35

得到x=4

y=2.5

得到(3x+5y)*30=735

2、现对某商品降价10%促销.为了使销售总金额不变.销售量要比按原价销售时增加百分之几?

解:原价销售时增加X%

(1-10%)*(1+X%)=1

X%=11.11%

为了使销售总金额不变.销售量要比按原价销售时增加11.11%

3、1个商品降价10%后的价格恰好比原价的一半多40元,问该商品原价是多少?

解:设原价为x元

(1-10%)x-40=0.5x

x=100

答:原价为100元

4、有含盐8%的盐水40克,要使盐水含盐20%,则需加盐多少克?

解:设加盐x克

开始纯盐是40*8%克

加了x克是40*8%+x

盐水是40+x克

浓度20%

所以(40*8%+x)/(40+x)=20%

(3.2+x)/(40+x)=0.2

3.2+x=8+0.2x

0.8x=4.8

x=6

所以加盐6克

5、某市场鸡蛋买卖按个数计价,一商贩以每个0.24元购进一批鸡蛋,但在贩运途中不慎碰碎了12个,剩下的蛋以每个0.28元售出,结果仍获利11.2元。问该商贩当初买进多少个鸡蛋?

解:设该商贩当初买进X个鸡蛋.

根据题意列出方程:

(X-12)*0.28-0.24X=11.2

0.28X-3.36-0.24X=11.2

0.04X=14.56

X=364

答:该商贩当初买进364个鸡蛋.

6、某车间有技工85人,平均每天每人可加工甲种部件15个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?

解:设安排生产甲的需要x人,那么生产乙的有(85-x)人

因为2个甲种部件和3个乙种部件配一套,所以

所以生产的甲部件乘以3才能等于乙部件乘以2的数量

16*x*3=10*(85-x)*2

解得:x=25

生产甲的需要25人,生产乙的需要60人!

7、红光电器商行把某种彩电按标价的八折出售,仍可获利20%。已知这种彩电每台进价1996元。那么这种彩电每台标价应为多少元?

解:设标价为X元.

80%X=1996×(1+20%)

80%X= 2395.2

X=2994

8、某商店把某种商品按标价的8折出售,可获利20%。若该商品的进价为每件22元,则每件商品的标价为多少元?

解::设标价为X元.

80%X=22×(1+20%)

80%X= 26.4

X=33

9、在一段双轨铁道上,两列火车迎头驶过,A列车车速为20m/s,B列车车速为24m/s,若A列车全长180m,B列车全长160m,问两列车错车的时间为多少秒?

解:(180+160)/(20+24)=7.28秒

10、甲乙两名同学在同一道路上从相距5km的两地同向而行,甲的速度为5km/h,乙的速度为3km/h,甲同学带着一条狗,当甲追乙时,狗先追乙,再返回遇上甲,又返回追乙,……直到甲追到乙为止。已知狗的速度为15km/h,求此过程中,狗跑的总路程。

解:首先要明确,甲乙的相遇时间等于狗来回跑的时间

所以狗的时间=甲乙相遇时间=总路程/甲乙速度和

=5km/(5km/h+3km/h)=5/8h

所以狗的路程=狗的时间*狗的速度=5/8h*15km/h=75/8km

所以甲乙相遇狗走了75/8千米

一天小红和小亮2人利用温度差测量某山峰的高度,小红在山顶侧的温度是-1度 小亮此时在山脚下测得的温度是5度 已知该地

区的高度每增加100M,气温大约下降0.6度 这座山峰的高度是?

当气温每上升1度时,某种金属丝伸长0.002MM 反之, 当温度每下降1度时,金属丝缩短0.002MM。把15度的金属丝加热到60度,在使它冷却降温到5度,金属丝的长度经历了怎样的变化? 最后的长度比原来长度伸长多少?

一种出租车的收费方式如下:4千米以内10元,4千米至15千米部分每千米加收1.2元,15千米以上部分每千米加收1.6元,某乘客要乘出租车去50千米处的某地.

(1)如果乘客中途不换车要付车费多少元?

(2)如果中途乘客换乘一辆出租车,他在何处换比较合算?算出总费用与(1)比较.

已知开盘是25.35,收盘是27.38,求开盘都收盘上涨的百分比.

(27.38-25.35)×100%÷25.35≈8%

购票人 50人以下 50-100人 100人以上

每人门票价 12元 10元 8元

现有甲乙两个旅游团,若分别购票,两团应付门票费总计1142元,如合在一起作为一个团体购票,只要门票费864元。两个旅游团各有几人?

【解】 因为864>8×100,可知两团总人数超过100人,因而两团总人数为864÷8=108(人).

因为108×10=1080<1142,108×12=1296>1142.所以每个团的人数不会都大于50人,也不会都小于50人,即一个团大于50人,另一个团少于50人.

假设两团都大于 50人,则分别付款时,应付108×10=1080(元),实际多付了1142-1080=62(元).这是少于50人的旅游团多付的钱.

因此,这个旅游团的人数为:62÷(12-10)=31(人),另一个旅游团人数为108-31=77(人).

1,有一只船在水中航行不幸漏水。当船员发现时船里已经进了一些水,且水仍在匀速进入船内。若8人淘水,要用5小时淘完;若10人淘水,要用3小时淘完。现在要求2.5小时淘完,要用多少人淘水?

答案:11个人

解:设船的总容积为a,船进水的速度为b,人淘水的速度为c,设要用x人淘水能2.5小时淘完.

8*c*5=1/2*a+5*b (1)

10*c*3=1/2*a+3*b (2)

x*c*2.5=1/2*a+2.5*b (3)

(1)-(2)得到b=5c (4),把b=5c代入(1)(2),然后(1)-(2)得到1/2a=15c (5)

把(4)(5)代入(3),最后整理的x=11

2.快、慢两辆车从快到慢车,快车行到全程2/3,慢车距终点180千米,两车按原速继续行驶,快到到达终点,慢车行驶了全程6/7,求全程多少米?

答案:快车行完全程,慢车走了全程的6/7;

同比可知:

快车行完全程的2/3时,慢车应走了6/7*2/3(即4/7),还剩余3/7,全程的3/7也就是已知条件180,全程即为180/(3/7)=420!

3,某银行建立大学生助学贷款,6年期的贷款年利率为百分之六,贷款利息的百分之五十由国家财政贴补。某大学生预计6年后能一次性偿还2万元,则他现在可以贷款的数额是多少元?(精确的1元)

答案:设他现在可以贷款的数额是x元。

0.5(0.06x*6)+x=20000

0.18x+x=20000

1.18x=20000

x≈16949

4,将△ABC的边延长至A1,使B为线段A A1的中点,同样方法,延长边BC得到点B1,延长边得到点C1,得到△A1 B1 C1称为第一次扩展,再将△A1 B1 C1按上述方法向外扩展得到△A2 B2 C2,如此,进行下去,得到△An Bn Cn,研究△An Bn Cn与△ABC的面积关系。(字数不少于200)

答案:连接A B1

∵AC=AC1

∴S△B1AC=S△B1AC1

又∵CB1=CB

∴S△B1AC=S△ABC

∴S△B1C1C=2S△ABC

同理可得S△AA1C1=S△BA1B1=2S△ABC

∴S△A1B1C1=7S△ABC

同理S△A2B2C2=7S△A1B1C1=49S△ABC

∴S△AnBnCn=7^nS△ABC

5,将△ABC的边延长至A1,使B为线段A A1的中点,同样方法,延长边BC得到点B1,延长边得到点C1,得到△A1 B1 C1称为第一次扩展,再将△A1 B1 C1按上述方法向外扩展得到△A2 B2 C2,如此,进行下去,得到△An Bn Cn,研究△An Bn Cn与△ABC的面积关.

答案:设三角形ABC三个角分别为α、β、γ按题意画出三角形DEF,则可得DEF的三个角分别为180-(180-α)/2-(180-β)/2=(α+β)/2

180-(180-γ)/2-(180-β)/2=(γ+β)/2

180-(180-α)/2-(180-γ)/2=(α+γ)/2

在三角形ABC内一定存在α+β<180

γ+β<180

α+γ<180

所以在三角形DEF中三个角都小于90所以DEF为锐角三角形

小红抄写一份材料,每分钟抄写30个字,若干分钟可以抄完,当她抄完这份材料的五分之二时,决定提高50%的效率,结果提前20分钟抄完,求这份材料有多少字?

设材料原先x分钟可以抄完,则有

30x=30*(2/5x)+30*(1+50%)*(3/5x-20)

得出x=100

这份材料有3000字

1.有一根铁丝,第一次用去了他的一半少1米,第二次用去了剩余铁丝的一半还多1米,结果这根铁丝还剩余2.5米,问这根铁丝原来长多少米?

2.将内径为200mm的圆柱形水桶中的满桶水倒入一个内部长\宽\高分别为300mm.300mm.80mm的长方形铁盒中,正好倒满,求圆柱形水桶中的水高?

3.列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千米,就可以将耽误的时间补上?

4.某学校七年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元,甲商店说:"羽毛球及球拍都打9折优惠",乙商店说"买一副球拍赠送2只羽毛球,(1)学校准备花90元钱全部用于买2副羽毛球拍及羽毛球若干只,问到哪家商店购买更合算?(2)若必须买2副羽毛球拍,则应当买多少只羽毛球时到两家商店才一样合算?

5.甲\乙\丙三位同学向贫困地区的少年儿童捐赠图书,已知这三位同学捐赠图书的册数的比是5:6:9 ,如果甲\丙两位同学捐书册数的和是乙捐书册数的2倍还多12册,那么他们各捐书多少册?

参考答案:

1.解设:这根铁丝原来长X米。

X-[1/2(1/2X-1)+1]=2.5

X=4

2.解设:高为Xmm

100·100·Л·X=300·300·80

X=720Л

3.解设:走X千米

X/50=[X-(40·6/60)]/40

X=4

4.甲:打9折后球拍为:22.5元/只 球为1.8元/只

球拍22.5·2=45元 球:(90-45)÷1.8=25(只)

乙: 25·2=50(元){送两只球}

需要买的球:(90-50)÷2=20(只)

一共的球:20+2=22(只)

甲那里可以买25只,而乙只能买22只.

所以,甲比较合算.

5.解设:每份为X

甲:5X 乙:6X 丙:9X

5X+9X=6X·2+12

X=6

所以:甲:5·6=30(本)

乙:6·6=36(本)

丙:9·6=54(本)

初一上册数学题 要有答案100道 填空题

一 填空题 1.-(- )的倒数是_________,相反数是__________,绝对值是__________。 2.若|x|+|y|=0,则x=__________,y=__________。 3.若|a|=|b|,则a与b__________。 4.因为到点2和点6距离相等的点表示的数是4,有这样的关系 ,那么到点100和到点999距离相等的数是_____________;到点 距离相等的点表示的数是____________;到点m和点–n距离相等的点表示的数是________。 5.计算: =_________。 6.已知 ,则 =_________。 7.如果 =2,那么x= . 8.到点3距离4个单位的点表示的有理数是_____________。 9.________________________范围内的有理数经过四舍五入得到的近似数3.142。 10.小于3的正整数有_____. 11. 如果m<0,n>0,|m|>|n|,那么m+n__________0。 有理数练习题参考答案 一 填空题 1. 4, - , .提示:题虽简单,但这类概念题在七年级的考试中几乎必考。 2. 0,0.提示:|x|≥0,|y|≥0.∴x=0,y=0. 3.相等或者互为相反数。提示:互为相反数的绝对值相等 。 4. 549.5, , .提示:到数轴上两点相等的数的中点等于这两数和的一半. 5. 0.提示:每相邻的两项的和为0。 6. -8.提示: ,4+a=0,a-2b=0,解得:a= -4,b= -2. = -8. 7. x-3=±2。x=3±2,x=5或x=1. 8. -1或7。提示:点3距离4个单位的点表示的有理数是3±4。 9. 3.1415-3.1424.提示:按照四舍五入的规则。 10.1,2.提示:大于零的整数称为正整数。 11. <0.提示:有理数的加法的符号取决于绝对值大的数。 参考资料: http://zhidao.baidu.com/question/17581670.html?fr=qrl3 二、填空题:(每小题3分,共24分) 11.方程-x- a=-3的解是-4,则a=_________. 12.如图5,将硬纸片沿虚线折起来,便可做成一个正方体,这个正方体,这个正方体的2号面的对面是________号面. 13.翻开数学书,连续看了3页,页码的和为453,则这3页的页码分别是第____页,第_______页,第________页. 14.观察下列图形和所给表样中的数据后回答问题. 当图形的周长为80时,梯形的个数为_________. 15.近似数3.1×105精确到________位,有________个有效数字. 16.一个角的补角比它的余角的3倍大10°,则这个角等于________. 17.开学时,对班上的男生进行了单杆引体向上的测验,以能做8次为标准, 超过的次数用正数表示,不足的次数用负数表示,该班男生的成绩如下: 成绩 2 -1 0 3 -2 -3 1 4 人数 4 3 3 4 5 4 5 2 则该班男生的达标率约为:_______. 18.一家商店将某种微波炉按原价提高40%后标价,又以8折优惠卖出, 结果每台微波炉比原价多赚了180元,这种微彼炉原价是________元. 答案:二、填空题 11.a=14 12.6 13.150,151,152 14.26 15.万,两 16.50° 17.80% 18.1500元

求100道初一上学期数学难题(带答案)

你是什么教材

如果可以我帮你

初一奥数练习题一

甲多开支100元,三年后负债600元.求每人每年收入多少?

S的末四位数字的和是多少?

    

4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.

5.求和:

6.证明:质数p除以30所得的余数一定不是合数.

8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.

9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.

解答:

  

   

  所以     x=5000(元).

  

  所以S的末四位数字的和为1+9+9+5=24.

  

3.因为

 

     a-b≥0,即a≥b.即当b

≥a>0或b≤a<0时,等式成立.

4.设上坡路程为x千米,下坡路程为y千米.依题意则

  

由②有2x+y=20,           ③

  由①有y=12-x.将之代入③得 2x+12-x=20.

  所以    x=8(千米),于是y=4(千米).

 5.第n项为

  所以

         

     

         

  6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.

  7.设

  由①式得(2p-1)(2q-1)=mpq,即

(4-m)pq+1=2(p+q).

  可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.

  (1)若m=1时,有

  解得p=1,q=1,与已知不符,舍去.

  (2)若m=2时,有

  因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.

  (3)若m=3时,有

  解之得

  故                  p+q=8.

  8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy+y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.

  9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以

 

  上述两式相加

  另一方面,

S△PCD=S△CND+S△CNP+S△DNP.

  因此只需证明

S△AND=S△CNP+S△DNP.

  由于M,N分别为AC,BD的中点,所以

S△CNP=S△CPM-S△CMN

   =S△APM-S△AMN

 =S△ANP.

  又S△DNP=S△BNP,所以

S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.

初一奥数练习题二

1.已知3x2-x=1,求6x3+7x2-5x+2000的值.

2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?

3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.

4.已知方程组

的解应为

一个学生解题时把c抄错了,因此得到的解为

求a2+b2+c2的值.

5.求方程|xy|-|2x|+|y|=4的整数解.

6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)

7.对k,m的哪些值,方程组 至少有一组解?

8.求不定方程3x+4y+13z=57的整数解.

9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?

解答:

1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.

2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则

y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.

所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.

3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以

∠ADC+∠BCD=180°,

  所以   AD∥BC.①  又因为  AB⊥BC,②

  由①,② AB⊥AD.

4.依题意有

    

  所以 a2+b2+c2=34.

5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,

  所以(|x|+1)(|y|-2)=2.

  因为|x|+1>0,且x,y都是整数,所以

 

 所以有

  

6.设王平买三年期和五年期国库券分别为x元和y元,则

  因为 y=35000-x,

  所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,

  所以 1.3433x+48755-1.393x=47761,

  所以 0.0497x=994,

  所以 x=20000(元),y=35000-20000=15000(元).

7.因为 (k-1)x=m-4, ①

  

m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.

当k=1,m≠4时,①无解.

  所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.

8.由题设方程得

z=3m-y.

  

x=19-y-4(3m-y)-m =19+3y-13m.

原方程的通解为   其中n,m取任意整数值.

9.设苹果、梨子、杏子分别买了x,y,z个,则

  消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.

  代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.

  

x=20,y=8,z=12.

  

因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.

初一奥数练习题三

1.解关于x的方程

2.解方程

其中a+b+c≠0.

3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.

4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.

5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.

6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.

7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.

8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?

9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且

求证:n是4的倍数.

解答:

1.化简得6(a-1)x=3-6b+4ab,当a≠1时,

  

    

2.将原方程变形为

  由此可解得x=a+b+c.

3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.

  

依题意得

 

  去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,

  

  

  5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].

  由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],  所以 [0.23x]=0.

  又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.

  6.如图1-105所示.在△PBC中有BC<PB+PC, ①

  延长BP交AC于D.易证PB+PC<AB+AC. ②

  由①,② BC<PB+PC<AB+AC, ③

  同理 AC<PA+PC<AC+BC, ④

AB<PA+PB<AC+AB. ⑤

  ③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).

  

所以

7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千

米.依题意得

  

由①得16y2=9x2, ③

  由②得16y=24+9x,将之代入③得

  即 (24+9x)2=(12x)2.解之得

  于是

  所以两站距离为9×8+16×6=168(千米).

  8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.

    。

  

  又因为

  所以,k是偶数,从而n是4的倍数.

初一奥数练习题四

1.已知a,b,c,d都是正数,并且a+d<a,c+d<b.

求证:ac+bd<ab.

2.已知甲种商品的原价是乙种商品原价的1.5倍.因市场变化,乙种商品提价的百分数是甲种商品降价的百分数的2倍.调价后,甲乙两种商品单价之和比原单价之和提高了2%,求乙种商品提价的百分数.

3.在锐角三角形ABC中,三个内角都是质数.求三角形的三个内角.

4.某工厂三年计划中,每年产量递增相同,若第三年比原计划多生产1000台,那么每年比上一年增长的百分数就相同,而且第三年的产量恰为原计划三年总产量的一半,求原计划每年各生产多少台?

  

    z=|x+y|+|y+1|+|x-2y+4|,

求z的最大值与最小值.

8.从1到500的自然数中,有多少个数出现1或5?

9.从19,20,21,…,98这80个数中,选取两个不同的数,使它们的和为偶数的选法有多少种?

解答:

  1.由对称性,不妨设b≤a,则ac+bd≤ac+ad=a(c+d)<ab.

  2.设乙种商品原单价为x元,则甲种商品的原单价为1.5x元.设甲商品降价y%,则乙商品提价2y%.依题意有1.5x(1-y%)+x(1+2y%)=(1.5x+x)(1+2%),

  化简得1.5-1.5y+1+2y=2.5×1.02.  所以y=0.1=10%,

  所以甲种商品降价10%,乙种商品提价20%.

  3.因为∠A+∠B+∠C=180°,所以∠A,∠B,∠C中必有偶数.唯一的偶质数为2,所以∠C=2°.所以∠A+∠B=178°.由于需∠A,∠B为奇质数,这样的解不唯一,如

  4.设每年增产d千台,则这三年的每一年计划的千台数分别为a-d,a,a+d依题意有

   解之得

  所以三年产量分别是4千台、6千台、8千台.

  

不等式组:

    

     

   所以 x>2;

     

    

               无解.

    

  

6.设原式为S,则

   所以

          

            

  

        <0.112-0.001=0.111.

  因为      

所以 =0.105.

  7.由|x|≤1,|y|≤1得 -1≤x≤1,-1≤y≤1.

  所以y+1≥0,x-2y+4≥-1-2×1+4=1>0.

  所以z=|x+y|+(y+1)+(x-2y+4)=|x+y|+x-y+5.

  (1)当x+y+≤0时,z=-(x+y)+x-y+5=5-2y.

  由-1≤y≤1可推得3≤5-2y≤7,所以这时,z的最小值为3、最大值为7.

  (2)当x+y>0时,z=(x+y)+(x-y+5)=2x+5.

  由-1≤x≤1及可推得3≤2x+5≤7,所以这时z的最小值为3、最大值为7.

  由(1),(2)知,z的最小值为3,最大值为7.

  8.百位上数字只是1的数有100,101,…,199共100个数;十位上数字是1或5的(其百位上不为1)有2×3×10=60(个).个位上出现1或5的(其百位和十位上都不是1或5)有2×3×8=48(个).再加上500这个数,所以,满足题意的数共有

100+60+48+1=209(个).

  9.从19到98共计80个不同的整数,其中有40个奇数,40个偶数.第一个数可以任选,有80种选法.第一个数如果是偶数,第二个数只能在其他的39个偶数中选取,有39种选法.同理,第一个数如果是奇数,第二个数也有39种选法,但第一个数为a,第二个为b与第一个为b,第二个为a是同一种选法,所以总的选法应该折半,即共有

  种选法.

初一奥数练习题五

1.一项任务,若每天超额2件,可提前计划3天完工,若每天超额4件,可提前5天完工,试求工作的件数和原计划完工所用的时间.

  2.已知两列数

2,5,8,11,14,17,…,2+(200-1)×3,

5,9,13,17,21,25,…,5+(200-1)×4,

  它们都有200项,问这两列数中相同的项数有多少项?

  3.求x3-3px+2q能被x2+2ax+a2整除的条件.

  

4.证明不等式

  5.若两个三角形有一个角对应相等.求证:这两个三角形的面积之比等于夹此角的两边乘积之比.

  6.已知(x-1)2除多项式x4+ax3-3x2+bx+3所得的余式是x+1,试求a,b的值.

  7.今有长度分别为1,2,3,…,9的线段各一条,可用多少种不同方法,从中选用若干条,使它们能围成一个正方形?

  8.平面上有10条直线,其中4条是互相平行的.问:这10条直线最多能把平面分成多少部分?

  9.边长为整数,周长为15的三角形有多少个?

解答:

  1.设每天计划完成x件,计划完工用的时间为y天,则总件数为xy件.依题意得

     

   解之得

  总件数xy=8×15=120(件),即计划用15天完工,工作的件数为120件.

  2.第一列数中第n项表示为2+(n-1)×3,第二列数中第m项表示为5+(m-1)×4.要使2+(n-1)×3=5+(m-1)×4.

  所以

因为1≤n≤200,所以

      

  所以  m=1,4,7,10,…,148共50项.

3.

     

x3-3px+2q被x2+2ax+a2除的余式为3(a2-p)x+2(q+a3),

  所以所求的条件应为

  

4.令

          

  因为

所以

      

  5.如图1-106(a),(b)所示.△ABC与△FDE中,

∠A=∠D.现将△DEF移至△ABC中,使∠A与∠D重合,DE=AE',DF=AF',连结F'B.此时,△AE'F'的面积等于三角形DEF的面积.

  ①×②得

    

  6.不妨设商式为x2+α·x+β.由已知有

   x4+ax3-3x2+bx+3

    =(x-1)2(x2+α·x+β)+(x+1)

    =(x2-2x+1)(x2+α· x+β)+x+1

    =x4+(α-2)x3+(1-2α+β)x2+(1+α-2β)x+β+1.

  比较等号两端同次项的系数,应该有

  只须解出

  所以a=1,b=0即为所求.

  7.因为

  所以正方形的边长≤11.

  下面按正方形边的长度分类枚举:

  (1)边长为11:9+2=8+3=7+4=6+5,

    可得1种选法.

  (2)边长为10:9+1=8+2=7+3=6+4,

    可得1种选法.

  (3)边长为9:9=8+1=7+2=6+3=5+4,

    可得5种选法.

  (4)边长为8:8=7+1=6+2=5+3,

    可得1种选法.

  (5)边长为7:7=6+1=5+2=4+3,

    可得1种选法.

  (6)边长≤6时,无法选择.

  综上所述,共有1+1+5+1+1=9

  种选法组成正方形.

  8.先看6条不平行的直线,它们最多将平面分成

2+2+3+4+5+6=22个部分.

  现在加入平行线.加入第1条平行线,它与前面的6条直线最多有6个交点,它被分成7段,每一段将原来的部分一分为二,故增加了7个部分.加入第2,第3和第4条平行线也是如此,即每加入一条平行线,最多增加7个部分.因此,这些直最多将平面分成

22+7×4=50

  个部分.

  9.不妨设三角形的三边长a,b,c满足a≥b≥c.由b+c>a,a+b+c=15,a≥b≥c可得,15=a+(b+c)>2a,所以a≤7.又15=a+b+c≤3a,故a≥5.于是a=5,6,7.当a=5时,b+c=10,故b=c=5;当a=b时,b+c=9.于是b=6,c=3,或b=5,c=4;当a=7时,b+c=8,于是b=7,c=1,或b=6,c=2,或b=5,c=3,或b=4,c=4.

  所以,满足题意的三角形共有7个.

初一上册100道数学计算题及答案。

2x+17=35

3x-67=11

12+8x=52

0.8x-4.2=2.2

2x+5=10

3x-15=75

4x+40=320

3x+77=122

5x-1.6=0.6

6x-4=20

10x-0.6=2.4

500-12x=140

1) 66x+17y=3967

25x+y=1200

答案:x=48 y=47

(2) 18x+23y=2303

74x-y=1998

答案:x=27 y=79

(3) 44x+90y=7796

44x+y=3476

答案:x=79 y=48

(4) 76x-66y=4082

30x-y=2940

答案:x=98 y=51

(5) 67x+54y=8546

71x-y=5680

答案:x=80 y=59

(6) 42x-95y=-1410

21x-y=1575

答案:x=75 y=48

(7) 47x-40y=853

34x-y=2006

答案:x=59 y=48

(8) 19x-32y=-1786

75x+y=4950

答案:x=66 y=95

(9) 97x+24y=7202

58x-y=2900

答案:x=50 y=98

(10) 42x+85y=6362

63x-y=1638

答案:x=26 y=62

(11) 85x-92y=-2518

27x-y=486

答案:x=18 y=44

(12) 79x+40y=2419

56x-y=1176

答案:x=21 y=19

(13) 80x-87y=2156

22x-y=880

答案:x=40 y=12

(14) 32x+62y=5134

57x+y=2850

答案:x=50 y=57

初一上数学计算题,带过程,带答案(100道,尽量多)

(初一上册)

一、 初一质量监测:

1、勇士排球队四场比赛的成绩(五局三胜制)是1:3,3:2, 0:3, 3:1,总的净胜局数是多少?P6页

解:1+3+3-(3+2+3+1)

=7-9

=-2

答:总的净胜局数是-2

2、下列各数是10名学生的数学考试成绩,先估算他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估值能力。P6页

82, 83, 78, 66, 95, 75, 56, 93, 82, 81

我估算他们的平均成绩为80分。

解:(82+83+78+66+95+75+56+93+82+81)÷10

=791÷10

=79.1(分)

答:他们的平均成绩为79.1分。

3、当温度每上升1°C时,某种金属丝伸长0.002mm。反之,当温度每下降 1°C时,金属丝缩短0.002mm。把15°C的金属丝加热到60°C,再使它冷却降温到5°C,金属丝的长度经历了怎样的变化?最后的长度比原长度伸长多少?P7页

解:⑴、(60-15)×0.002=0.09(mm)

⑵、0.09-(60-5) ×0.002

=0.09-0. 11

=-0.02(mm)

答:最后的长度比原长度伸长-0.02mm。

4、一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿千米。试用科学计数法表示1个天文单位是多少千米(保留4个有效数字)。P7页

解:1.4960(亿千米)保留4个有效数字

≈1.496×108(千米)

∴一个天文单位约是1.496×108千米。

不等式与不等式组(应用题)

5、某商店以每辆250元的进价购入200辆自行车,并以每辆275元的价格销售。两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出多少辆自行车?P54页

解:设这时至少已售出X辆自行车。

275X﹥250×200

275X﹥50000

X﹥181.11......

∵ X为整数

∴ X=182

答:这时至少已售出182辆自行车。

6、采石场爆破时,点燃导火线后工人要在爆破前转移到400米外的安全区域。导火线燃烧速度是1厘米/秒,工人转移的速度是5米/秒,导火线至少需要多长?

解:设导火线至少需要X米,得

400÷5≤X/0.01

80≤X/0.01

X≥0.8

答:导火线至少需要0.8米。

7、一艘轮船从某江上游的A地匀速驶到下游的B地用了10小时,从B地匀速返回A地用了不到12小时,这段江水流速为3千米/时,轮船往返的静水速度V

不变,V满足什么条件?P54页

解:设静水速度为V,得

(3+V)×10 ÷ (V-3)﹥10

(3+V)×10 ÷ (V-3)﹤12

解:V﹥33

答:静速V﹥33

◆8、苹果的进价是每千克1.5元,销售中估计有5%的苹果正常损耗。商家把售价至少定为多少,就能避免亏本?P54页

解:设商家把售价至少定为X元。

1.5≤(100%-5%)X

1.5≤0.95X

X≥1.5789

答:商家把售价至少定为1.58元,就能避免亏本。

◆9、某工厂前年有员工280人,去年经过结构改革减员40人,全厂年利润至少增加100万元,人均创利至少增加6000元,前年全厂利润是多少?

解:设前年全厂利润为X万元。P55页

X÷280+0.6﹤(X+100)÷(280-40)

6X+1008﹤7(X+100)

- X﹤-1008+100

- X﹤-308

X﹥308

答:前年全厂利润是308万元。

◆10、2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?(每年均按365天计算)P55页

解:设2008年空气质量良好的天数要比2002年至少增加X天。

X≥365×(70%-55%)

X≥365×15%

X≥54.75

答:2008年空气质量良好的天数要比2002年至少增加55天。

11、有一个两位数,如果把它的个位数字a和十位数字b对调,那么什么情况下得到的两位数比原来的两位数大?什么情况下得到的两位数比原来的两位数小?什么情况下得到的两位数等于原来的两位数?P55页

解: 10a+b﹥10b+a (1)

10b+a﹥10a+b (2)

10a+b=10b+a (3)

a﹥b (1)

b﹥a (2)

a =b (3)

∴ (1)、当a﹥b时,得到的两位数比原来的两位数大

(2)、当 b﹥a时,得到的两位数比原来的两位数小

(3)、当 b=a时,得到的两位数等于原来的两位数

12、某次知识竞赛有20道题,每一题答对得10分,答错或不答都扣5分。小明得分要超过90分,他至少要答对多少道题?P55页

解:设他至少要答对X道题。

10X-(20-X) ×5﹥90

10X-100+5X﹥90

15X﹥190

X﹥12.66……

∵X为整数

∴X=13

答:他至少要答对13道题

13、一件由黄金与白银制成的首饰重a克,商家称其中黄金含量不低于90%,黄金与白银的密度分别是19.3g/cm3与10.5g/cm3,列出不等式表示这件首饰的体积应满足什么条件。P56页

(提示:质量=密度×体积)

解:V﹤0.9a÷19.3+0.1a÷10.5

◆14、甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。顾客怎样选择商店购物能获得更大优惠?P56页

解:设顾客的消费金额为X元

甲 100+(X-100)×0.9

乙 50+(X-50)×0.95

∵ 甲 ﹥ 乙

∴ 100+(X-100)×0.9﹥50+(X-50)×0.95

X﹤150

如:X﹤50时,在甲、乙店买都不优惠

当50﹤X﹤100时,在乙店买优惠

当100﹤X﹤150时,在乙店买优惠

当X﹥150时,在甲店买优惠

15、一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?P60页

解:设李永每天读(X+3)页,张力每天读X页

7X﹤98 (1)

7(X+3)﹥98 (2)

X﹤14 (1)

X﹥11 (2)

∴ 不等式解集为11﹤X﹤14

∵ X为整数

∴ X=12,13

答:张力平均每天读12,13页书。

16、3个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务。每个小组原先每天生产多少件产品?P60页

解:设每个小组原先每天生产X件产品。

3X×10﹤500 (1)

3(X+1)×10﹥500 (2)

X﹤50/3 (1)

X﹥47/3 (2)

∴ 47/3 ﹤X﹤50/3

∵ X为整数

∴ X=16

答:每个小组原先每天生产16件产品。

17、某商品的售价是150元,商家售出一件这种商品可获利润是进价的10%~20%,进价的范围是什么(精确到1元)?P62页

解:设进价X元。

X+10%X=150 (1)

X+20%X=150 (2)

X≈136 (1)

X=125 (2)

∴ 进价范围是125元~136元。

◆18、用每分钟可抽1.1吨水的A型抽水机来抽水,半小时可以抽完;如果用B型抽水机,估计20分到22分可以抽完。B型抽水机比A型抽水机每分钟多抽多少吨水?P63页

解:设B型抽水机每分钟可抽X吨水。

20≤1.1×30/X≤22

20X≤1.1×30

22X≥1.1×30

20X≤33

22X≥33

X≤1.65

X≥1.5

∴ 1.5≤X≤1.65

1.5-1.1=0.4

1.65-1.1=0.55

∵设B型抽水机比A型抽水机每分钟多抽Y吨水。

∴0.4≤Y≤0.55

答:B型抽水机比A型抽水机每分钟多抽多少0.4~0.55吨水。

◆19、把一些书分给几个学生,如果每人分3本书,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。这些书有多少本?学生有多少人?P64页

解:设这些书有X本,学生有Y人。

3Y+8=X (1)

5(Y-1)+3=X (2)

解: 3Y+8=X (1)

5Y-X =2 (2)

(2)-(1)得2Y=10

Y=5

把Y=5代入(1)得

15+8=X

X=23

∴ X=23

Y=5

答:这些书有23本?学生有5人?

列方程解应用题

1、运送29.5吨煤,先用一辆载重4吨汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?

解:设还要运x次才能完 。

29.5-3×4=2.5x

17.5=2.5x

x=7

答:还要运7次才能完

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

解:它的高是x米

x(7+11)=90*2

18x=180

x=10

它的高是10米

3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?

这9天中平均每天生产x个

9x+908=5408

9x=4500

x=500

这9天中平均每天生产500个

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?

乙每小时行x千米

3(45+x)+17=272

3(45+x)=255

45+x=85

x=40

乙每小时行40千米

5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

平均成绩是x分

40*87.1+42x=85*82

3484+42x=6970

42x=3486

x=83

平均成绩是83分

6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

平均每箱x盒

10x=250+550

10x=800

x=80

平均每箱80盒

7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?

平均每组x人

5x+80=200

5x=160

x=32

平均每组32人

8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?

食堂运来面粉x千克

3x-30=150

3x=180

x=60

食堂运来面粉60千克

9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?

平均每行梨树有x棵

6x-52=20

6x=72

x=12

平均每行梨树有12棵

10、一块三角形地的面积是840平方米,底是140米,高是多少米?

高是x米

140x=840*2

140x=1680

x=12

高是12米

11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?

每件儿童衣服用布x米

16x+20*2.4=72

16x=72-48

16x=24

x=1.5

每件儿童衣服用布1.5米

12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?

女儿今年x岁

30=6(x-3)

6x-18=30

6x=48

x=8

女儿今年8岁

13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

需要x时间

50x=40x+80

10x=80

x=8

需要8时间

14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?

苹果x

3x+2(x-0.5)=15

5x=16

x=3.2

苹果:3.2

梨:2.7

15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?

甲x小时到达中点

50x=40(x+1)

10x=40

x=4

甲4小时到达中点

16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。

乙的速度x

2(x+15)+4x=60

2x+30+4x=60

6x=30

x=5

乙的速度5

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?

原来两根绳子各长x米

3(x-15)+3=x

3x-45+3=x

2x=42

x=21

原来两根绳子各长21米

18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?

每只篮球x

7x+10x/3=248

21x+10x=744

31x=744

x=24

每只篮球:24

每只足球:8

1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?

还要运x次才能完

29.5-3*4=2.5x

17.5=2.5x

x=7

还要运7次才能完

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

它的高是x米

x(7+11)=90*2

18x=180

x=10

它的高是10米

3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?

这9天中平均每天生产x个

9x+908=5408

9x=4500

x=500

这9天中平均每天生产500个

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?

乙每小时行x千米

3(45+x)+17=272

3(45+x)=255

45+x=85

x=40

乙每小时行40千米

5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?

平均成绩是x分

40*87.1+42x=85*82

3484+42x=6970

42x=3486

x=83

平均成绩是83分

6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?

平均每箱x盒

10x=250+550

10x=800

x=80

平均每箱80盒

7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?

平均每组x人

5x+80=200

5x=160

x=32

平均每组32人

8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?

食堂运来面粉x千克

3x-30=150

3x=180

x=60

食堂运来面粉60千克

9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?

平均每行梨树有x棵

6x-52=20

6x=72

x=12

平均每行梨树有12棵

10、一块三角形地的面积是840平方米,底是140米,高是多少米?

高是x米

140x=840*2

140x=1680

x=12

高是12米

11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?

每件儿童衣服用布x米

16x+20*2.4=72

16x=72-48

16x=24

x=1.5

每件儿童衣服用布1.5米

12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?

女儿今年x岁

30=6(x-3)

6x-18=30

6x=48

x=8

女儿今年8岁

13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?

需要x时间

50x=40x+80

10x=80

x=8

需要8时间

14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?

苹果x

3x+2(x-0.5)=15

5x=16

x=3.2

苹果:3.2

梨:2.7

15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?

甲x小时到达中点

50x=40(x+1)

10x=40

x=4

甲4小时到达中点

16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。

乙的速度x

2(x+15)+4x=60

2x+30+4x=60

6x=30

x=5

乙的速度5

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?

原来两根绳子各长x米

3(x-15)+3=x

3x-45+3=x

2x=42

x=21

原来两根绳子各长21米

18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?

每只篮球x

7x+10x/3=248

21x+10x=744

31x=744

x=24

每只篮球:24

每只足球:8

1、运一批货物,一直过去两次租用这两台大货车情况:第一次 甲种车2辆,乙种车3辆,运了15.5吨 第二次 甲种车5辆 乙种车6辆 运了35吨货物 现租用该公司3辆甲种车和5辆乙种车 如果按每吨付运费30元 问货主应付多少元

解:设甲可以装x吨,乙可以装y吨,则

2x+3y=15.5

5x+6y=35

得到x=4

y=2.5

得到(3x+5y)*30=735

2、现对某商品降价10%促销.为了使销售总金额不变.销售量要比按原价销售时增加百分之几?

解:原价销售时增加X%

(1-10%)*(1+X%)=1

X%=11.11%

为了使销售总金额不变.销售量要比按原价销售时增加11.11%

3、1个商品降价10%后的价格恰好比原价的一半多40元,问该商品原价是多少?

解:设原价为x元

(1-10%)x-40=0.5x

x=100

答:原价为100元

4、有含盐8%的盐水40克,要使盐水含盐20%,则需加盐多少克?

解:设加盐x克

开始纯盐是40*8%克

加了x克是40*8%+x

盐水是40+x克

浓度20%

所以(40*8%+x)/(40+x)=20%

(3.2+x)/(40+x)=0.2

3.2+x=8+0.2x

0.8x=4.8

x=6

所以加盐6克

5、某市场鸡蛋买卖按个数计价,一商贩以每个0.24元购进一批鸡蛋,但在贩运途中不慎碰碎了12个,剩下的蛋以每个0.28元售出,结果仍获利11.2元。问该商贩当初买进多少个鸡蛋?

解:设该商贩当初买进X个鸡蛋.

根据题意列出方程:

(X-12)*0.28-0.24X=11.2

0.28X-3.36-0.24X=11.2

0.04X=14.56

X=364

答:该商贩当初买进364个鸡蛋.

6、某车间有技工85人,平均每天每人可加工甲种部件15个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?

解:设安排生产甲的需要x人,那么生产乙的有(85-x)人

因为2个甲种部件和3个乙种部件配一套,所以

所以生产的甲部件乘以3才能等于乙部件乘以2的数量

16*x*3=10*(85-x)*2

解得:x=25

生产甲的需要25人,生产乙的需要60人!

7、红光电器商行把某种彩电按标价的八折出售,仍可获利20%。已知这种彩电每台进价1996元。那么这种彩电每台标价应为多少元?

解:设标价为X元.

80%X=1996×(1+20%)

80%X= 2395.2

X=2994

8、某商店把某种商品按标价的8折出售,可获利20%。若该商品的进价为每件22元,则每件商品的标价为多少元?

解::设标价为X元.

80%X=22×(1+20%)

80%X= 26.4

X=33

9、在一段双轨铁道上,两列火车迎头驶过,A列车车速为20m/s,B列车车速为24m/s,若A列车全长180m,B列车全长160m,问两列车错车的时间为多少秒?

解:(180+160)/(20+24)=7.28秒

10、甲乙两名同学在同一道路上从相距5km的两地同向而行,甲的速度为5km/h,乙的速度为3km/h,甲同学带着一条狗,当甲追乙时,狗先追乙,再返回遇上甲,又返回追乙,……直到甲追到乙为止。已知狗的速度为15km/h,求此过程中,狗跑的总路程。

解:首先要明确,甲乙的相遇时间等于狗来回跑的时间

所以狗的时间=甲乙相遇时间=总路程/甲乙速度和

=5km/(5km/h+3km/h)=5/8h

所以狗的路程=狗的时间*狗的速度=5/8h*15km/h=75/8km

所以甲乙相遇狗走了75/8千米

一天小红和小亮2人利用温度差测量某山峰的高度,小红在山顶侧的温度是-1度 小亮此时在山脚下测得的温度是5度 已知该地

区的高度每增加100M,气温大约下降0.6度 这座山峰的高度是?

当气温每上升1度时,某种金属丝伸长0.002MM 反之, 当温度每下降1度时,金属丝缩短0.002MM。把15度的金属丝加热到60度,在使它冷却降温到5度,金属丝的长度经历了怎样的变化? 最后的长度比原来长度伸长多少?

一种出租车的收费方式如下:4千米以内10元,4千米至15千米部分每千米加收1.2元,15千米以上部分每千米加收1.6元,某乘客要乘出租车去50千米处的某地.

(1)如果乘客中途不换车要付车费多少元?

(2)如果中途乘客换乘一辆出租车,他在何处换比较合算?算出总费用与(1)比较.

已知开盘是25.35,收盘是27.38,求开盘都收盘上涨的百分比.

(27.38-25.35)×100%÷25.35≈8%

购票人 50人以下 50-100人 100人以上

每人门票价 12元 10元 8元

现有甲乙两个旅游团,若分别购票,两团应付门票费总计1142元,如合在一起作为一个团体购票,只要门票费864元。两个旅游团各有几人?

【解】 因为864>8×100,可知两团总人数超过100人,因而两团总人数为864÷8=108(人).

因为108×10=1080<1142,108×12=1296>1142.所以每个团的人数不会都大于50人,也不会都小于50人,即一个团大于50人,另一个团少于50人.

假设两团都大于 50人,则分别付款时,应付108×10=1080(元),实际多付了1142-1080=62(元).这是少于50人的旅游团多付的钱.

因此,这个旅游团的人数为:62÷(12-10)=31(人),另一个旅游团人数为108-31=77(人).

1,有一只船在水中航行不幸漏水。当船员发现时船里已经进了一些水,且水仍在匀速进入船内。若8人淘水,要用5小时淘完;若10人淘水,要用3小时淘完。现在要求2.5小时淘完,要用多少人淘水?

答案:11个人

解:设船的总容积为a,船进水的速度为b,人淘水的速度为c,设要用x人淘水能2.5小时淘完.

8*c*5=1/2*a+5*b (1)

10*c*3=1/2*a+3*b (2)

x*c*2.5=1/2*a+2.5*b (3)

(1)-(2)得到b=5c (4),把b=5c代入(1)(2),然后(1)-(2)得到1/2a=15c (5)

把(4)(5)代入(3),最后整理的x=11

2.快、慢两辆车从快到慢车,快车行到全程2/3,慢车距终点180千米,两车按原速继续行驶,快到到达终点,慢车行驶了全程6/7,求全程多少米?

答案:快车行完全程,慢车走了全程的6/7;

同比可知:

快车行完全程的2/3时,慢车应走了6/7*2/3(即4/7),还剩余3/7,全程的3/7也就是已知条件180,全程即为180/(3/7)=420!

3,某银行建立大学生助学贷款,6年期的贷款年利率为百分之六,贷款利息的百分之五十由国家财政贴补。某大学生预计6年后能一次性偿还2万元,则他现在可以贷款的数额是多少元?(精确的1元)

答案:设他现在可以贷款的数额是x元。

0.5(0.06x*6)+x=20000

0.18x+x=20000

1.18x=20000

x≈16949

4,将△ABC的边延长至A1,使B为线段A A1的中点,同样方法,延长边BC得到点B1,延长边得到点C1,得到△A1 B1 C1称为第一次扩展,再将△A1 B1 C1按上述方法向外扩展得到△A2 B2 C2,如此,进行下去,得到△An Bn Cn,研究△An Bn Cn与△ABC的面积关系。(字数不少于200)

答案:连接A B1

∵AC=AC1

∴S△B1AC=S△B1AC1

又∵CB1=CB

∴S△B1AC=S△ABC

∴S△B1C1C=2S△ABC

同理可得S△AA1C1=S△BA1B1=2S△ABC

∴S△A1B1C1=7S△ABC

同理S△A2B2C2=7S△A1B1C1=49S△ABC

∴S△AnBnCn=7^nS△ABC

5,将△ABC的边延长至A1,使B为线段A A1的中点,同样方法,延长边BC得到点B1,延长边得到点C1,得到△A1 B1 C1称为第一次扩展,再将△A1 B1 C1按上述方法向外扩展得到△A2 B2 C2,如此,进行下去,得到△An Bn Cn,研究△An Bn Cn与△ABC的面积关.

答案:设三角形ABC三个角分别为α、β、γ按题意画出三角形DEF,则可得DEF的三个角分别为180-(180-α)/2-(180-β)/2=(α+β)/2

180-(180-γ)/2-(180-β)/2=(γ+β)/2

180-(180-α)/2-(180-γ)/2=(α+γ)/2

在三角形ABC内一定存在α+β<180

γ+β<180

α+γ<180

所以在三角形DEF中三个角都小于90所以DEF为锐角三角形

小红抄写一份材料,每分钟抄写30个字,若干分钟可以抄完,当她抄完这份材料的五分之二时,决定提高50%的效率,结果提前20分钟抄完,求这份材料有多少字?

设材料原先x分钟可以抄完,则有

30x=30*(2/5x)+30*(1+50%)*(3/5x-20)

得出x=100

这份材料有3000字

初一上学期100道计算题(带过程。带答案)

参考资料:http://edu.jx163.com/edu2/test/attche/site327/20070124/00e04c793857072105990c.doc

75÷〔138÷(100-54)〕 85×(95-1440÷24)

80400-(4300+870÷15) 240×78÷(154-115)

1437×27+27×563 〔75-(12+18)〕÷15

2160÷〔(83-79)×18〕 280+840÷24×5

325÷13×(266-250) 85×(95-1440÷24)

58870÷(105+20×2) 1437×27+27×563

81432÷(13×52+78) [37.85-(7.85+6.4)] ×30

156×[(17.7-7.2)÷3] (947-599)+76×64

36×(913-276÷23) [192-(54+38)]×67

[(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78)

5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕 (31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35) 0.8×[(10-6.76)÷1.2]

(136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5

0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5)

812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6

85+14×(14+208÷26) 120-36×4÷18+35

(284+16)×(512-8208÷18) 9.72×1.6-18.305÷7

4/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/10

12.78-0÷( 13.4+156.6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.5+2.5)÷1.6

85+14×(14+208÷26) (58+37)÷(64-9×5)

(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)

0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6

120-36×4÷18+35 10.15-10.75×0.4-5.7

5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52

32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)

[(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.6

5.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-6

3.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.6

5.8×(3.87-0.13)+4.2×3.74

33.02-(148.4-90.85)÷2.5

回答者: 754791551 - 魔法学徒 一级 10-5 13:26

(一)计算题:

(1)23+(-73)

(2)(-84)+(-49)

(3)7+(-2.04)

(4)4.23+(-7.57)

(5)(-7/3)+(-7/6)

(6)9/4+(-3/2)

(7)3.75+(2.25)+5/4

(8)-3.75+(+5/4)+(-1.5)

(9)(-17/4)+(-10/3)+(+13/3)+(11/3)

(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)

(11)(+1.3)-(+17/7)

(12)(-2)-(+2/3)

(13)|(-7.2)-(-6.3)+(1.1)|

(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)

(15)(-2/199)*(-7/6-3/2+8/3)

(16)4a)*(-3b)*(5c)*1/6

还有50道题,不过没有答案

1. 3/7 × 49/9 - 4/3

2. 8/9 × 15/36 + 1/27

3. 12× 5/6 – 2/9 ×3

4. 8× 5/4 + 1/4

5. 6÷ 3/8 – 3/8 ÷6

6. 4/7 × 5/9 + 3/7 × 5/9

7. 5/2 -( 3/2 + 4/5 )

8. 7/8 + ( 1/8 + 1/9 )

9. 9 × 5/6 + 5/6

10. 3/4 × 8/9 - 1/3

0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4

11. 7 × 5/49 + 3/14

12. 6 ×( 1/2 + 2/3 )

13. 8 × 4/5 + 8 × 11/5

14. 31 × 5/6 – 5/6

15. 9/7 - ( 2/7 – 10/21 )

16. 5/9 × 18 – 14 × 2/7

17. 4/5 × 25/16 + 2/3 × 3/4

18. 14 × 8/7 – 5/6 × 12/15

19. 17/32 – 3/4 × 9/24

20. 3 × 2/9 + 1/3

21. 5/7 × 3/25 + 3/7

22. 3/14 ×× 2/3 + 1/6

23. 1/5 × 2/3 + 5/6

24. 9/22 + 1/11 ÷ 1/2

25. 5/3 × 11/5 + 4/3

26. 45 × 2/3 + 1/3 × 15

27. 7/19 + 12/19 × 5/6

28. 1/4 + 3/4 ÷ 2/3

29. 8/7 × 21/16 + 1/2

30. 101 × 1/5 – 1/5 × 21

31.50+160÷40 (58+370)÷(64-45)

32.120-144÷18+35

33.347+45×2-4160÷52

34(58+37)÷(64-9×5)

35.95÷(64-45)

36.178-145÷5×6+42 420+580-64×21÷28

37.812-700÷(9+31×11) (136+64)×(65-345÷23)

38.85+14×(14+208÷26)

39.(284+16)×(512-8208÷18)

40.120-36×4÷18+35

41.(58+37)÷(64-9×5)

42.(6.8-6.8×0.55)÷8.5

43.0.12× 4.8÷0.12×4.8

44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6

45.6-1.6÷4= 5.38+7.85-5.37=

46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=

47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9

48.10.15-10.75×0.4-5.7

49.5.8×(3.87-0.13)+4.2×3.74

50.32.52-(6+9.728÷3.2)×2.5

51.-5+58+13+90+78-(-56)+50

52.-7*2-57/(3

53.(-7)*2/(1/3)+79/(3+6/4)

54.123+456+789+98/(-4)

55.369/33-(-54-31/15.5)

56.39+{3x[42/2x(3x8)]}

57.9x8x7/5x(4+6)

58.11x22/(4+12/2)

59.94+(-60)/10

1.

a^3-2b^3+ab(2a-b)

=a^3+2a^2b-2b^3-ab^2

=a^2(a+2b)-b^2(2b+a)

=(a+2b)(a^2-b^2)

=(a+2b)(a+b)(a-b)

2.

(x^2+y^2)^2-4y(x^2+y^2)+4y^2

=(x^2+y^2-2y)^2

3.

(x^2+2x)^2+3(x^2+2x)+x^2+2x+3

=(x^2+2x)^2+4(x^2+2x)+3

=(x^2+2x+3)(x^2+2x+1)

=(x^2+2x+3)(x+1)^2

4.

(a+1)(a+2)+(2a+1)(a-2)-12

=a^2+3a+2+2a^2-3a-2-12

=3a^2-12

=3(a+2)(a-2)

5.

x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2

=[x(y+z)-y(x-z)]^2

=(xz+yz)^2

=z^2(x+y)^2

6.

3(a+2)^2+28(a+2)-20

=[3(a+2)-2][(a+2)+10]

=(3a+4)(a+12)

7.

(a+b)^2-(b-c)^2+a^2-c^2

=(a+b)^2-c^2+a^2-(b-c)^2

=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)

=(a+b-c)(a+b+c+a-b+c)

=2(a+b-c)(a+c)

8.

x(x+1)(x^2+x-1)-2

=(x^2+x)(x^2+x-1)-2

=(x^2+x)^2-(x^2+x)-2

=(x^2+x-2)(x^2+x+1)

=(x+2)(x-1)(x^2+x+1)

(二)填空题:

(1)零减去a的相反数,其结果是_____________; (2)若a-b>a,则b是_____________数; (3)从-3.14中减去-π,其差应为____________; (4)被减数是-12(4/5),差是4.2,则减数应是_____________; (5)若b-a<-,则a,b的关系是___________,若a-b<0,则a,b的关系是______________; (6)(+22/3)-( )=-7

(三)判断题:

(1)一个数减去一个负数,差比被减数小. (2)一个数减去一个正数,差比被减数小. (3)0减去任何数,所得的差总等于这个数的相反数. (4)若X+(-Y)=Z,则X=Y+Z (5)若a<0,b|b|,则a-b>0

一)选择题:

(1)已知a,b是两个有理数,如果它们的商a/b=0,那么( ) (A)a=0且b≠0 (B)a=0 (C)a=0或b=0 (D)a=0或b≠0 (2)下列给定四组数1和1;-1和-1;0和0;-2/3和-3/2,其中互为倒数的是( ) (A)只有 (B)只有 (C)只有 (D)都是 (3)如果a/|b|(b≠0)是正整数,则( ) (A)|b|是a的约数 (B)|b|是a的倍数 (C)a与b同号 (D)a与b异号 (4)如果a>b,那么一定有( ) (A)a+b>a (B)a-b>a (C)2a>ab (D)a/b>1

(二)填空题:

(1)当|a|/a=1时,a______________0;当|a|/a=-1时,a______________0;(填>,0,则a___________0; (11)若ab/c0,则b___________0; (12)若a/b>0,b/c(-0.3)4>-106 (B)(-0.3)4>-106>(-0.2)3 (C)-106>(-0.2)3>(-0.3)4 (D)(-0.3)4>(-0.2)3>-106 (4)若a为有理数,且a2>a,则a的取值范围是( ) (A)a<0 (B)0<1 (C)a1 (D)a>1或a<0 (5)下面用科学记数法表示106000,其中正确的是( ) (A)1.06*105 (B)10.6*105 (C)1.06*106 (D)0.106*107 (6)已知1.2363=1.888,则123.63等于( ) (A)1888 (B)18880 (C)188800 (D)1888000 (7)若a是有理数,下列各式总能成立的是( ) (A)(-a)4=a4 (B)(-a)3=A4 (C)-a4=(-a)4 (D)-a3=a3 (8)计算:(-1)1-(-2)2-(-3)3-(-4)4所得结果是( ) (A)288 (B)-288 (C)-234 (D)280

(二)填空题:

(1)在23中,3是________,2是_______,幂是________;若把3看作幂,则它的底数是________,

指数是________; (2)根据幂的意义:(-2)3表示________相乘; (-3)2v表示________相乘;-23表示________. (3)平方等于36/49的有理数是________;立方等于-27/64的数是________ (4)把一个大于10的正数记成a*10n(n为正整数)的形成,a的范围是________,这里n比原来的整

数位数少_________,这种记数法称为科学记数法; (5)用科学记数法记出下面各数:4000=___________;950000=________________;地球

的质量约为49800...0克(28位),可记为________; (6)下面用科学记数法记出的数,原来各为多少 105=_____________;2*105=______________; 9.7*107=______________9.756*103=_____________ (7)下列各数分别是几位自然数 7*106是______位数 1.1*109是________位数; 3.78*107是______位数 1010是________位数; (8)若有理数m 0,b0 (B)a-|b|>0 (C)a2+b3>0 (D)a<0 (6)代数式(a+2)2+5取得最小值时的a值为( ) (A)a=0 (B)a=2 (C)a=-2 (D)a0 (B)b-a>0 (C)a,b互为相反数; (D)-ab (C)a

(5)用四舍五入法得到的近似数1.20所表示的准确数a的范围是( )

(A)1.195≤a<1.205 (B)1.15≤a<1.18 (C)1.10≤a<1.30 (D)1.200≤a<1.205 (6)下列说法正确的是( ) (A)近似数3.80的精确度与近似数38的精确度相同; (B)近似数38.0与近似数38的有效数字个数一样 (C)3.1416精确到百分位后,有三个有效数字3,1,4; (D)把123*102记成1.23*104,其有效数字有四个.

(二)填空题:

(1)写出下列由四舍五入得到的近似值数的精确度与有效数字: (1)近似数85精确到________位,有效数字是________; (2)近似数3万精确到______位,有效数字是________; (3)近似数5200千精确到________,有效数字是_________; (4)近似数0.20精确到_________位,有效数字是_____________. (2)设e=2.71828......,取近似数2.7是精确到__________位,有_______个有效数字;

取近似数2.7183是精确到_________位,有_______个有效数字. (3)由四舍五入得到π=3.1416,精确到0.001的近似值是π=__________; (4)3.1416保留三个有效数字的近似值是_____________;

(三)判断题:

(1)近似数25.0精确以个痊,有效数字是2,5; (2)近似数4千和近似数4000的精确程度一样; (3)近似数4千和近似数4*10^3的精确程度一样; (4)9.949精确到0.01的近似数是9.95.

练习八(B级)

(一)用四舍五入法对下列各数取近似值(要求保留三个有效数字): (1)37.27 (2)810.9 (3)0.0045078 (4)3.079

(二)用四舍五入法对下列各数取近似值(要求精确到千位): (1)37890.6 (2)213612.4 (3)1906.57

9.

9x^2(x-1)^2-3(x^2-x)-56

=9x^2(x-1)^2-3x(x-1)-56

=[3x(x-1)-8][3x(x-1)+7]

=(3x^2-3x-8)(3x^2-3x+7

祝您学习进步!我的手都酸了。

初一数学100道选择题 填空题 附答案

是一共100道?

一、选择题:(每小题3分,共21分)

题号 1 2 3 4 5 6 7

答案

每题给出4个答案,其中只有一个是正确的,请把选出的答案编号填在上面的答题表中,否则不给分.

1、已知方程3x+a=2的解是5,则a的值是

A、—13 B、—17 C、13 D、17

2、已知等腰三角形的周长是63cm,以一腰为边作等边三角形,其周长为69cm,那么等腰三角形的底边长是

A、23cm B、17 cm C、21 cm D、6 cm

3、在2004年印度洋海啸中,小红打开自己的储蓄盒,把积赞的零花钱拿出来数了数,发现1元、2元的共有15张,共20元钱,那么小红1元、2元的各有

A、5张、10张 B、10张、5张 C、8张、7张 D、7张、8张

4、下列图形中,有无数条对称轴的是

A、等边三角形 B、平行四边形 C、等腰梯形 D、圆

5、对于数据2,2,3,2,5,2,10,2,5,2,3,下列说法正确的有

①众数是2;

②众数与中位数的数值不相等;

③中位数与平均数的数值相等;

④平均数与众数的数值相等。

A、1个 B、2个 C、3个 D、4个

6、下列四种正多边形中,用同一种图形不能铺满平面的是

A、正三角形 B、正方形 C、正五边形 D、正六边形

7、某药店在“非典”期间,市场上抗病毒药品紧缺的情况下,将某药品提价100%,物价部门查处后,限定其提价幅度只能是原价的10%,则该药品现在降价的幅度是

A、45% B、50% C、90% D、95%

二、填空题:(每小题4分,共32分,请将答案填入答题表中)

题号 8 9 10 11

答案

题号 12 13 14 15

答案

8、方程组 的解是 。

9、等腰直角三角形ABC中,∠A=90o,BC=6cm,BD平分∠A BC交AC天D,DE⊥BC于E,则△CDE的周长为_ __。

10、若多边形内角和为1080o,则这个多边形是 边形。

11、一艘船顺流航行的速度是每小时20千米,逆流航行的速度是每小时12千米,则船在静水中的速度为 ,水流速度为 。

12、在一次篮球比赛中,某主力队员在一次比赛中投22球,14中,得28分,除了3分球全中外,他还投中了 个两分和 个罚球。

13、已知2x—y=3,那么1—4x+2y= 。

14、如图1所示,已知∠1=80o,∠F=15o,∠B=35o,

那么∠A= ,∠DEA= 。

(图1)

15、 由多边形一个顶点所引的对角线将这个多边形分成了10个三角形,则这个多边形的内角和为 。

参考答案

一、选择题

1、A 2、B 3、B 4、D 5、A 6、C 7、A

二、填空题:(共10小题,每题2分,共20分,请将答案填入答题表中)

8、x=3,y=-1; 9、6cm; 10、八 ; 11、16千米/小时候 4千米/小时; 12、8 13、-5; 14、45º 85

1.当x= 时,方程 x+1=2成立.

2.方程-3x=3-4x的解是 。

3.当x= 时,y1=x+3与y2=2-x相等。

4.x的3倍与2的差等于4,x= 。

5.一本书周长为68cm,长比宽多6cm。设这本书宽为xcm,长为 cm,则可通过解方程 ,求出宽x= cm,长等于 cm。

6.棱锥的侧面是 形。

7.如图将正方体切去一块,所得图形有 个面。

8.如图由A图经过 得到B图。

9.将两块相同的直角三角板( 300 )相等的边拼在一起,能拼成 种平面图形。

二、选择题 (每题3分,计24分 )

10。下列各数中,是方程2x-1=5解的 是( )

A.2 B.3 C.4 D.5

11.如果x=-2是方程 a(x+3)= a+x的解,那么 a2- +1= ( )

A.17 B.18 C.19 D.20

12.已知A=2, B=x+1, 若 A•B= 则 x= ( )

A.2 B.1 C. 0 D. -1

13. 3x+ 与3(x- )互为相反数,则x= ( )

A. - B. - C.- D.-

14.下列图形中的某一图形绕L旋转一周后成为圆台的是( )

15.将左图绕O点按顺时针方向 旋转900后,得到的图形是( )

16.空心圆柱从三个方向看正确的图形是(看不见的部分用虚线表示)( )

17、下列图形不能折成正方体的是( )

附参考答案:

1.2 2.3 3. - 4.2 5. x+6, 2[x+(x+6)]=68, x=14, 20 6. 三角形,7. 7,

8. 翻折, 9. 6 , 10. B, 11.C, 12.D,13D, 14.C,15. B, 16.A, 17.A,

º; 15、1800º;

选择题

1.已知(x+y)∶(x-y)=3∶1,则x∶y=( )。

A、3∶1 B、2∶1 C、1∶1 D、1∶2

2.方程-2x+ m=-3的解是3,则m的值为( )。

A、6 B、-6 C、 D、-18

3.在方程6x+1=1,2x= ,7x-1=x-1,5x=2-x中解为 的方程个数是( )。

A、1个 B、2个 C、3个 D、4个

4.根据“a的3倍与-4绝对值的差等于9”的数量关系可得方程( )。

A、|3a-(-4)|=9 B、|3a-4|=9

C、3|a|-|-4|=9 D、3a-|-4|=9

5.若关于x的方程 =4(x-1)的解为x=3,则a的值为( )。

A、2 B、22 C、10 D、-2

答案与解析

答案:1、B 2、A 3、B 4、D 5、C

解析:

1.分析:本题考查对等式进行恒等变形。

由(x+y)∶(x-y)=3∶1,知x+y=3(x-y),化简得:x+y=3x-3y,

得2x-4y=0,即x=2y,x∶y=2∶1。

2.分析:∵ 3是方程-2x+ m=-3的解,

∴ -2×3+ m=-3,

即-6+ m=-3,

∴ m=-3+6,——根据等式的基本性质1

∴ m=6,——根据等式的基本性质2

∴ 选A。

3.分析:6x+1=1的解是0,2x= 的解是 ,7x-1=x-1的解是0,5x=2-x的解是 。

4.略。

5.分析:因为x=3是方程 =4(x-1)的解,故将x=3代入方程满足等式。

一、 多变量型

多变量型一元一次方程解应用题是指在题目往往有多个未知量,多个相等关系的应用题。这些未知量只要设其中一个为x,其他未知量就可以根据题目中的相等关系用含有x的代数式来表示,再根据另一个相等关系列出一个一元一次方程即可。

例一:(2005年北京市人教)夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施。某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度。求只将温度调高1℃后两种空调每天各节电多少度?

分析:本题有四个未知量:调高温度后甲空调节电量、调高温度后乙空调节电量、清洗设备后甲空调节电量、清洗设备后乙空调节电量。相等关系有调高温度后甲空调节电量-调高温度后乙空调节电量=27、清洗设备后乙空调节电量=1.1×调高温度后乙空调节电量、调高温度后甲空调节电量=清洗设备后甲空调节电量、清洗设备后甲空调节电量+清洗设备后乙空调节电量=405。根据前三个相等关系用一个未知数设出表示出四个未知量,然后根据最后一个相等关系列出方程即可。

解:设只将温度调高1℃后,乙种空调每天节电x度,则甲种空调每天节电 度。依题意,得:

解得:

答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度。

二、 分段型

分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题。解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决。

例二:(2005年东营市)某水果批发市场香蕉的价格如下表:

购买香蕉数

(千克) 不超过

20千克 20千克以上

但不超过40千克 40千克以上

每千克价格 6元 5元 4元

张强两次共购买香蕉50千克(第二次多于第一次),共付出264元, 请问张强第一次、第二次分别购买香蕉多少千克?

分析:由于张强两次共购买香蕉50千克(第二次多于第一次),那么第二次购买香蕉多于25千克,第一次少于25千克。由于50千克香蕉共付264元,其平均价格为5.28元,所以必然第一次购买香蕉的价格为6元/千克,即少于20千克,第二次购买的香蕉价格可能5元,也可能4元。我们再分两种情况讨论即可。

解:

1) 当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:

6x+5(50-x)=264

解得:x=14

50-14=36(千克)

2)当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:

6x+4(50-x)=264

解得:x=32(不符合题意)

答:第一次购买14千克香蕉,第二次购买36千克香蕉

例三:(2005年湖北省荆门市)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是( )

住院医疗费(元) 报销率(%)

不超过500元的部分 0

超过500~1000元的部分 60

超过1000~3000元的部分 80

……

A、1000元 B、1250元 C、1500元 D、2000元

解:设此人住院费用为x元,根据题意得:

500×60%+(x-1000)80%=1100

解得:x=2000

所以本题答案D。

三、 方案型

方案型一元一次方程解应用题往往给出两个方案计算同一个未知量,然后用等号将表示两个方案的代数式连结起来组成一个一元一次方程。

例四:(2005年泉州市)某校初三年级学生参加社会实践活动,原计划租用30座客车若干辆,但还有15人无座位。

(1)设原计划租用30座客车x辆,试用含x的代数式表示该校初三年级学生的总人数;

(2)现决定租用40座客车,则可比原计划租30座客车少一辆,且所租40座客车中有一辆没有坐满,只坐35人。请你求出该校初三年级学生的总人数。

分析:本题表示初三年级总人数有两种方案,用30座客车的辆数表示总人数:30x+15

用40座客车的辆数表示总人数:40(x-2)+35。

解:(1)该校初三年级学生的总人数为:30x+15

(2)由题意得:

30x+15=40(x-2)+35

解得:x=6

30x+15=30×6+15=195(人)

答:初三年级总共195人。

四、 数据处理型

数据处理型一元一次方程解应用题往往不直接告诉我们一些条件,需要我们对所给的数据进行分析,获取我们所需的数据。

例五:(2004年北京海淀区)解应用题:2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:

行驶区间 车次 起始时刻 到站时刻 历时 全程里程

A地—B地 K120 2:00 6:00 4小时 264千米

请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.

行驶区间 车次 起始时刻 到站时刻 历时 全程里程

A地—B地 K120 2:00 264千米

解:

行驶区间 车次 起始时刻 到站时刻 历时 全程里程

A地—B地 K120 2:00 4:24 2.4小时 264千米

分析:通过表一我们可以得知提速前的火车速度为264÷4=66千米/时,从而得出提速后的速度,再根据表二已经给的数据,算出要求的值。

解:设列车提速后行驶时间为x小时. 根据题意,得

经检验,x=2.4符合题意.

答:到站时刻为4:24,历时2.4小时

例六:(2005浙江省)据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1 500千米,全程参考价为180元.下表是沿途各站至H站的里程数:

车站名 A B C D E F G H

各站至H站的里程数(单位:千米) 1500 1130 910 622 402 219 72 0

例如,要确定从B站至E站火车票价,其票价为 (元).

(1) 求A站至F站的火车票价(结果精确到1元);

(2) 旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的?(要求写出解答过程).

解: (1) 解法一:由已知可得 .

A站至F站实际里程数为1500-219=1281.

所以A站至F站的火车票价为 0.12 1281=153.72 154(元)

解法二:由已知可得A站至F站的火车票价为 (元).

(2)设王大妈实际乘车里程数为x千米,根据题意,得: .

解得 x= (千米).

对照表格可知, D站与G站距离为550千米,所以王大妈是D站或G站下的车.

代数第六章能力自测题

一元一次不等式和一元一次不等式组

初中数学网站http://emath.126.com

分式方程

(一)填空

关于y的方程是_____.

(二)选择

A.x=-3; B.x≠-3;

C.一切实数; D.无解.

C.无解; D.一切实数.

A.x=0; B.x=0,x=1;

C.x=0,x=-1; D.代数式的值不可能为零.

A.a=5; B.a=10;

C.a=10; D.a=15.

A.a=-2; B.a=2;

C.a=1; D.a=-1.

A.一切实数; B.x≠7的一切实数;

C.无解; D.x≠-1,7的一切实数.

A.a=2; B.a只为4;

C.a=4或0; D.以上答案都不对.

A.a>0; B.a>0且a≠1;

C.a>0且a≠0; D.a<0.

A.a<0; B.a<0或a=1;

C.a<0或a=2; D.a>0.

(三)解方程

51.甲、乙两人同时从A地出发,步行30千米到B地甲比乙每小时多走1千米,结果甲比乙早到1小时,两人每小时各走多少千米?

http://219.226.9.43/Resource/CZ/CZSX/DGJC/CSSX/D2/math0003ZW1_0019.htm

初一数学上册奥数题及答案(50道以上)

一、选择题(每题1分,共10分)

1.如果a,b都代表有理数,并且a+b=0,那么 ( )

A.a,b都是0. B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.

2.下面的说法中正确的是 ( )

A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.

C.多项式与多项式的和是多项式.D.整式与整式的和是整式.

3.下面说法中不正确的是 ( )

A. 有最小的自然数. B.没有最小的正有理数.

C.没有最大的负整数. D.没有最大的非负数.

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )

A.a,b同号. B.a,b异号.C.a>0. D.b>0.

5.大于-π并且不是自然数的整数有 ( )

A.2个. B.3个.C.4个. D.无数个.

6.有四种说法:

甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;

丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.

这四种说法中,不正确的说法的个数是 ( )

A.0个. B.1个.C.2个. D.3个.

7.a代表有理数,那么,a和-a的大小关系是 ( )

A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )

A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.

9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )

A.一样多. B.多了.C.少了. D.多少都可能.

10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )

A.增多. B.减少.C.不变. D.增多、减少都有可能.

二、填空题(每题1分,共10分)

1. ______.

2.198919902-198919892=______.

3. =________.

4. 关于x的方程 的解是_________.

5.1-2+3-4+5-6+7-8+…+4999-5000=______.

6.当x=- 时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____.

7.当a=-0.2,b=0.04时,代数式 的值是______.

8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.

9.制造一批零件,按计划18天可以完成它的 .如果工作4天后,工作效率提高了 ,那么完成这批零件的一半,一共需要______天.

10.现在4点5分,再过______分钟,分针和时针第一次重合.

答案与提示

一、选择题

1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A

提示:

1.令a=2,b=-2,满足2+(-2)=0,由此

2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.

3.1是最小的自然数,A正确.可以找到正

所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.

5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.

6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.

7.令a=0,马上可以排除A、B、C,应选D.

8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.

我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式 去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.

9.设杯中原有水量为a,依题意可得,

第二天杯中水量为a×(1-10%)=0.9a;

第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;

第三天杯中水量与第一天杯中水量之比为

所以第三天杯中水量比第一天杯中水量少了,选C.

10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为

设河水速度增大后为v,(v>v0)则往返一次所用时间为

由于v-v0>0,a+v0>a-v0,a+v>a-v

所以(a+v0)(a+v)>(a-v0)(a-v)

∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.

二、填空题

提示:

2.198919902-198919892

=(19891990+19891989)×(19891990-19891989)

=(19891990+19891989)×1=39783979.

3.由于(2+1)(22+1)(24+1)(28+1)(216+1)

=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)

=(24-1)(24+1)(28+1)(216+1)

=(28-1)(28+1)(216+1)

=(216-1)(216+1)=232-1.

2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=4

5.1-2+3-4+5-6+7-8+…+4999-5000

=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)

=-2500.

6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+2

7.注意到:

当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.

8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%

解得:x=45000(克).

七年级上册数学难题100题,要有答案的

1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).

4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.

5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?

6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.

7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.

(1)某户八月份用电84千瓦时,共交电费30.72元,求a.

(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?

8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.

(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.

(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

答案

1.解:设甲、乙一起做还需x小时才能完成工作.

根据题意,得 × +( + )x=1

解这个方程,得x=

=2小时12分

答:甲、乙一起做还需2小时12分才能完成工作.

2.解:设x年后,兄的年龄是弟的年龄的2倍,

则x年后兄的年龄是15+x,弟的年龄是9+x.

由题意,得2×(9+x)=15+x

18+2x=15+x,2x-x=15-18

∴x=-3

答:3年前兄的年龄是弟的年龄的2倍.

(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)

3.解:设圆柱形水桶的高为x毫米,依题意,得

·( )2x=300×300×80

x≈229.3

答:圆柱形水桶的高约为229.3毫米.

4.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为 分.

过完第二铁桥所需的时间为 分.

依题意,可列出方程

+ =

解方程x+50=2x-50

得x=100

∴2x-50=2×100-50=150

答:第一铁桥长100米,第二铁桥长150米.

5.解:设这种三色冰淇淋中咖啡色配料为2x克,

那么红色和白色配料分别为3x克和5x克.

根据题意,得2x+3x+5x=50

解这个方程,得x=5

于是2x=10,3x=15,5x=25

答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.

6.解:设这一天有x名工人加工甲种零件,

则这天加工甲种零件有5x个,乙种零件有4(16-x)个.

根据题意,得16×5x+24×4(16-x)=1440

解得x=6

答:这一天有6名工人加工甲种零件.

7.解:(1)由题意,得

0.4a+(84-a)×0.40×70%=30.72

解得a=60

(2)设九月份共用电x千瓦时,则

0.40×60+(x-60)×0.40×70%=0.36x

解得x=90

所以0.36×90=32.40(元)

答:九月份共用电90千瓦时,应交电费32.40元.

8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,

设购A种电视机x台,则B种电视机y台.

(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程

1500x+2100(50-x)=90000

即5x+7(50-x)=300

2x=50

x=25

50-x=25

②当选购A,C两种电视机时,C种电视机购(50-x)台,

可得方程1500x+2500(50-x)=90000

3x+5(50-x)=1800

x=35

50-x=15

③当购B,C两种电视机时,C种电视机为(50-y)台.

可得方程2100y+2500(50-y)=90000

21y+25(50-y)=900,4y=350,不合题意

由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.

(2)若选择(1)中的方案①,可获利

150×25+250×15=8750(元)

若选择(1)中的方案②,可获利

150×35+250×15=9000(元)

9000>8750 故为了获利最多,选择第二种方案.

猜你喜欢