讲到公式,大家应该都知道,有人问反三角函数求导公式,当然了,还有人问反三角函数怎么计算成弧度,这到底是咋回事?实际上三角函数反三角函数的转化怎样记住呢,今天小编就与大家分享反三角角函数的反三角公式,希望大家有所收获。
反三角角函数的反三角公式
1、Excel中计算反三角函数需要用到反余弦函数(ACOS)、反正弦函数(ASIN)和反正切函数(ATAN)。
2、其中,函数ACOS是用来计算指定数值的反余弦值的,公式为:=ACOS(number)。
3、函数ASIN是用来计算指定数值的反正弦值的,公式为:=ASIN(number)。
4、函数ATAN是用来计算指定数值的反正切值的公式为:=ATAN(number)。
5、反余弦函数ACOS(number)中,参数number表示角度对应的余弦值。
6、求单元格A71数值的反余弦,在空白单元格输入公式:=ACOS(A71)。
7、确认公式后,按下Enter键即可得到反余弦值1.047。
8、反正弦函数ASIN(number)中,参数number表示角度对应的正弦值。
9、在求单元格A76数值的反正弦,在空白单元格输入公式:=ASIN(A76)。
10、确认公式后,按下Enter键即可得到反正弦值0.7753。
11、反正切函数ATAN(number)中。参数number表示角度对应的正切值。
12、求单元格A80数值的反正弦,在空白单元格输入公式:=ATAN(A80)。
13、确认公式后,按下Enter键,即可得到反正切值0.6747。
1、反正弦函数的求导:(arcsinx)'=1/√(1-x^2)
2、反余弦函数的求导:(arccosx)'=-1/√(1-x^2)
3、反正切函数的求导:(arctanx)'=1/(1+x^2)
4、反余切函数的求导:(arccotx)'=-1/(1+x^2)
为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x。
相应地。反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π 2;反余切函数y="arccot" x的主值限在0<y<π。
1、反正弦函数
正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。
2、反余弦函数
余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。
3、反正切函数
正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。
5、反余切函数
余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。
6、反正割函数
正割函数y=sec x在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。
定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。
7、反余割函数
余割函数y=csc x在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。
反三角函数的公式:
反三角函数的和差公式与对应的三角函数的和差公式没有关系:
y=arcsin(x),定义域[-1,1],值域[-π/2,π/2];
y=arccos(x),定义域[-1,1],值域[0,π];
y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2);
y=arccot(x),定义域(-∞,+∞),值域(0,π);
sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx;
证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得。
其他几个用类似方法可得。
cos(arccosx)=x,arccos(-x)=π-arccosx。
tan(arctanx)=x,arctan(-x)=-arctanx。
反三角函数其他公式:
cos(arcsinx)=√(1-x^2)。
arcsin(-x)=-arcsinx。
arccos(-x)=π-arccosx。
arctan(-x)=-arctanx。
arccot(-x)=π-arccotx。
arcsinx+arccosx=π/2=arctanx+arccotx。
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x。
当x∈[-π/2,π/2]有arcsin(sinx)=x。
x∈[0,π],arccos(cosx)=x。
x∈(-π/2,π/2),arctan(tanx)=x。
x∈(0,π),arccot(cotx)=x。
x>0,arctanx=π/2-arctan1/x,arccotx类似。
若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy))。
三角函数的诱导公式(四公式) 。
公式一: sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα 。
公式二: sin(π/2-α) = cosα cos(π/2-α) = sinα 。
公式三: sin(π/2+α) = cosα cos(π/2+α) = -sinα 。
公式四: sin(π-α) = sinα cos(π-α) = -cosα 。
反三角函数和三角函数的转换公式列一下~谢谢了~
反三角函数公式:
arcsin(-x)=-arcsinx
arccos(-x)=∏-arccosx
arctan(-x)=-arctanx
arccot(-x)=∏-arccotx
arcsinx+arccosx=∏/2=arctanx+arccotx
sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x
当x∈〔0,∏〕,arccos(cosx)=x
x∈(—∏/2,∏/2),arctan(tanx)=x
x∈(0,∏),arccot(cotx)=x
x〉0,arctanx=arctan1/x,arccotx类似
若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy)
同角三角函数的基本关系式
倒数关系: 商的关系: 平方关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
诱导公式
sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式 万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半角的正弦、余弦和正切公式 三角函数的降幂公式
二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函数的和差化积公式 三角函数的积化和差公式
α+β α-β
sinα+sinβ=2sin—--·cos—-—
2 2
α+β α-β
sinα-sinβ=2cos—--·sin—-—
2 2
α+β α-β
cosα+cosβ=2cos—--·cos—-—
2 2
α+β α-β
cosα-cosβ=-2sin—--·sin—-—
2 2 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα ·sinβ=- -[cos(α+β)-cos(α-β)]
2
反三角函数的泰勒公式
arcsin x =∑(n=1~∞) [(2n)!]x^(2n+1)/[4^n*(n!)^2*(2n+1)]
arctan x =∑(n=1~∞) [(-1)^n]x^(2n+1)/(2n+1)
扩展资料:
以下列举一些常用函数的泰勒公式:
反三角函数怎么计算?
反三角函数值怎么算
反三角函数可以转换成三角函数吗?怎样转换?转换公式是怎么?
反三角函数可以转换成三角函数。反三角函数只是指某个三角函数值等于这个数的角,它表示的是角,而三角函数是指某个角的三角函数值。
例如:cos60°=1/2,arccos1/2=60°。
反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。
为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:
1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;
2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);
3、为了使研究方便,常要求所选择的区间包含0到π/2的角;
4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。
为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。
反三角函数转换公式
反三角函数公式: arcsin(-x)=-arcsinx arccos(-x)=∏-arccosx arctan(-x)=-arctanx arccot(-x)=∏-arccotx arcsinx+arccosx=∏/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x 当x∈〔0,∏〕,arccos(cosx)=x x∈(—∏/2,∏/2),arctan(tanx)=x x∈(0,∏),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似 若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy) 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα 3tanα-tan3α tan3α=—————— 1-3tan2α 三角函数的和差化积公式 三角函数的积化和差公式 α+β α-β sinα+sinβ=2sin—--·cos—-— 2 2 α+β α-β sinα-sinβ=2cos—--·sin—-— 2 2 α+β α-β cosα+cosβ=2cos—--·cos—-— 2 2 α+β α-β cosα-cosβ=-2sin—--·sin—-— 2 2 1 sinα ·cosβ=-[sin(α+β)+sin(α-β)] 2 1 cosα ·sinβ=-[sin(α+β)-sin(α-β)] 2 1 cosα ·cosβ=-[cos(α+β)+cos(α-β)] 2 1 sinα ·sinβ=- -[cos(α+β)-cos(α-β)] 2
三角函数,反三角函数,导数所有公式
三角公式共四组:诱导公式,同角公式,复角公式(和差倍半积),解三角形公式(正余弦、面积)。
我的BLOG全有。来龙去脉,一目了然.
欢迎访问我的BLOG
三角函数salon 三角函数公式全家福·袖珍版
http://hi.baidu.com/ok%B0%C9/blog/item/e6467ea80d4e23e01e17a2ee.html
反三角函数公式
反三角函数公式: arcsin(-x)=-arcsinx arccos(-x)=∏-arccosx arctan(-x)=-arctanx arccot(-x)=∏-arccotx arcsinx+arccosx=∏/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当x∈〔—∏/2,∏/2〕时,有arcsin(sinx)=x 当x∈〔0,∏〕,arccos(cosx)=x x∈(—∏/2,∏/2),arctan(tanx)=x x∈(0,∏),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似 若(arctanx+arctany)∈(—∏/2,∏/2),则arctanx+arctany=arctan(x+y/1-xy) 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα ·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα ·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin2α=2sinαcosα cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanα tan2α=————— 1-tan2α sin3α=3sinα-4sin3α cos3α=4cos3α-3cosα 3tanα-tan3α tan3α=—————— 1-3tan2α 三角函数的和差化积公式 三角函数的积化和差公式 α+β α-β sinα+sinβ=2sin—--·cos—-— 2 2 α+β α-β sinα-sinβ=2cos—--·sin—-— 2 2 α+β α-β cosα+cosβ=2cos—--·cos—-— 2 2 α+β α-β cosα-cosβ=-2sin—--·sin—-— 2 2 1 sinα ·cosβ=-[sin(α+β)+sin(α-β)] 2 1 cosα ·sinβ=-[sin(α+β)-sin(α-β)] 2 1 cosα ·cosβ=-[cos(α+β)+cos(α-β)] 2 1 sinα ·sinβ=- -[cos(α+β)-cos(α-β)] 2
求三角函数和反三角函数常用公式
1、三角函数常用公式
(1)两角和与化的公式
sin(A±B)=sinAcosB±cosAsinB;cos(A+B)=cosAcosB-sinAsinB;cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=(tanA+tanB)/(1-tanA·tanB);tan(A-B) =(tanA-tanB)/(1+tanA·tanB)。
(2)和差化积公式
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2];sina-sinb=2cos[(a+b)/2]sin[(a-b)/2];cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2];cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]。
(3)积化和差公式
sinasinb=-1/2[cos(a+b)-cos(a-b)];cosacosb=1/2[cos(a+b)+cos(a-b)];sinacosb=1/2 [sin(a+b)+sin(a-b)]; cosasinb=1/2 [sin(a+b)-sin(a-b)]。
2、反三角函数常用公式
(1)arcsin(-x)=-arcsinx;arccos(-x)=π-arccosx;arctan(-x)=-arctanx;arccot(-x)=π-arccotx。
(2)arcsinx+arccosx=π/2=arctanx+arccotx;sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)。
(3)当x∈(—π/2,π/2)时,arcsin(sinx)=x;当x∈(0,π),arccos(cosx)=x;x∈(—π/2,π/2),arctan(tanx)=x;x∈(0,π),arccot(cotx)=x。
(4)若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)。
反三角函数分类
1、反正弦函数
正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。
2、反余弦函数
余弦函数y=cosx在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1],值域[0,π]。
3、反正切函数
正切函数y=tanx在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。
4、反余切函数
余切函数y=cotx在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。
反正割函数
正割函数y=secx在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。
5、反余割函数
余割函数y=cscx在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。