当前位置:首页 > x保养 >

是指通过一平面图形或立体中心到边上两点的距离

  • x保养
  • 2021-12-09

提到是指,我们很多人都知道,有朋友问三角形算平面图形吗,当然了,还有朋友想问是指通过一平面图形或立体中心到边上两点的距离,这到底是咋回事?实际上是指通过一平面图形或立体中心到边上两点的距离呢,以下是小编为你精心整理的是指通过一平面图形或立体中心到边上两点的距离,跟我一起来看看吧~

是指通过一平面图形或立体中心到边上两点的距离

如果在小学中的话

直径则是用d来表示,而r为半径,则d=2r

就好比一条直线,从中对折,就分为两半

直径,是指通过一平面图形或立体(如圆、圆锥截面、球、立方体)中心到边上两点间的距离,通常用字母“d”表示。

在同一个圆中直径的长度是半径的2倍,可以表示d=2r或r=d/2。

直径和圆的周长关系为 C=πd

直径和圆的面积关系为 S=(πd^2)/4

平面图形和立体图形的公式。

平面图形和立体图形的公式:

1、平面图形公式:

长方形的周长=(长+宽)×2 、正方形的周长=边长×4、 圆的周长=圆周率×直径=圆周率×半径×2 、半径=直径÷2

长方形的面积=长×宽 、平行四边形的面积=底×高、正方形的面积=边长×边长 、梯形的面积=(上底+下底)×高÷2 、圆的面积=圆周率×半径×半径

2、立体图形公式:

长方体的表面积=2×(长×宽+长×高+宽×高) 用符号表示是:S=2(ab+bc+ca)

长方体的体积 =长×宽×高 用符号表示是:V=abh 或底面积×高 用符号表示是:V=Sh

正方体的表面积=棱长×棱长×6 用符号表示是:S=a²×6

正方体的体积=棱长×棱长×棱长 用符号表示是:V=a³

圆柱的侧面积=底面周长×高 用符号表示是:S侧=πd×h

圆柱的表面积=2×底面积+侧面积 用符号表示是:S=πr²×2+dπh

圆柱的体积=底面积×高 用符号表示是:V=πr²×h

圆锥的体积=底面积×高÷3 用符号表示是:V=πr²×h÷3

圆锥侧面积=1/2*母线长*底面周长

圆台体积=[S+S′+√(SS′)]h÷3

球体体积=(1/3*S*h)*(4*pi*R²)/S=4/3*pi*R²

平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形、平形四边形等都是基本的平面图形。

平面图形是平面几何研究的对象。

正方形 S=a² 或对角线×对角线÷2 C=4a

平行四边形 S=ah

三角形 S=ah÷2

梯形 S=(a+b)×h÷2

圆形 S=πr2 C=πd

椭圆 S=πr

所有点不在同一平面上的图形叫立体图形。

对现实物体认识上的一种抽象,即把现实的物体在只考虑其形状和大小,而忽略其它因素的基础上在平面上的表示。

平面图形和立体图形怎么区分

平面只有长宽,立体的有长宽高。

什么是平面图形 什么是立体图形

什么是轴对称图形

图形与几何知识点整理

认识立体图形

(1)几何图形:从实物中抽象出的各种图形叫几何图形.几何图形分为立体图形和平面图形.

(2)立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形.

(3)重点和难点突破:

结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.

点、线、面、体

1)体与体相交成面,面与面相交成线,线与线相交成点.

(2)从运动的观点来看 点动成线,线动成面,面动成体.点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.

(3)从几何的观点来看 点是组成图形的基本元素,线、面、体都是点的集合. (4)长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体. (5)面有平面和曲面之分,如长方体由6个平面组成,球由一个曲面组成.

欧拉公式

(1)简单多面体的顶点数V、面数F及棱数E间的关系为:V+F-E=2.这个公式叫欧拉公式.公式描述了简单多面体顶点数、面数、棱数特有的规律. (2)V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数.

几何体的表面积

(1) 几何体的表面积=侧面积+底面积(上、下底的面积和) (2) 常见的几种几何体的表面积的计算公式

①圆柱体表面积:2πR2+2πRh (R为圆柱体上下底圆半径,h为圆柱体高)

②圆锥体表面积:πr2+nπ(h2+r2)360(r为圆锥体低圆半径,h为其高,n为圆锥侧面展开图中扇形的圆心角)

③长方体表面积:2(ab+ah+bh) (a为长方体的长,b为长方体的宽,h为长方体的高) ④正方体表面积:6a2 (a为正方体棱长

认识平面图形

(1)平面图形: 一个图形的各部分都在同一个平面内,如:线段、角、三角形、正方形、圆等. (2)重点难点突破:

通过以前学过的平面图形:三角形、长方形、正方形、梯形、圆,了解它们的共性是在同一平面内.

几何体的展开图

(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.

(2)常见几何体的侧面展开图:

①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.

(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决. 从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.

展开图折叠成几何提体

通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形 正方体相对两个面上的文字

(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.

(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.

(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.

截一个几何体

(1) 截面:用一个平面去截一个几何体,截出的面叫做截面.

(2) 截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个

面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形

第二节 直线 射线 线段

直线 射线 线段 的表示

(1) 直线、射线、线段的表示方法

①直线:用一个小写字母表示,如:直线l,或用两个大些字母(直线上的)表示,如直线AB.

②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.

③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段

AB(或线段BA).

(2) 点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外

直线的性质

(1)直线公理:经过两点有且只有一条直线. 简称:两点确定一条直线. (2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.

线段的性质

线段公理 两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短. 简单说成: 两点之间,线段最短.

两点间的距离

(1) 两点间的距离连接两点间的线段的长度叫两点间的距离.

(2) 平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两

个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离

比较线段的长短

(1)比较两条线段长短的方法有两种:度量比较法、重合比较法. 就结果而言有三种结果:AB>CD、AB=CD、AB<CD. (2)线段的中点:把一条线段分成两条相等的线段的点. (3)线段的和、差、倍、分及计算

做一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段.

如图,AC=BC,C为AB中点,AC=12AB,AB=2AC,D 为CB中点,则CD=DB=12CB=14AB,AB=4CD,这就是线段的和、差、倍、分.

第三节 角

一:角

(1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边.

(2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.

(3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角.

(4)角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.

钟面角 (1)钟面一周平均分60格,相邻两格刻度之间的时间间隔是1分钟,时针1分钟走112格,分针1分钟走1格.钟面上每一格的度数为360°÷12=30°.

(2)计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.

(3)钟面上的路程问题 分针:60分钟转一圈,每分钟转动的角度为:360°÷60=6° 时针:12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°. 方向角

(1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.

(2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.) (3)画方位角 以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.

二:角的比较与运算

度分秒的换 (1)度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.

(2)具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法. 角平分线的定义

(1)角平分线的定义 从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线. (2)性质:若OC是∠AOB的平分线 则∠AOC=∠BOC=12∠AOB或∠AOB=2∠AOC=2∠BOC. (3)平分角的方法有很多,如度量法、折叠法、尺规作图法等,要注意积累,多动手实践.

具体的地址 http://wenku.baidu.com/link?url=s_7MllnV3cr2BDiNmH1KjuPFJDFOW0ABGfOSMiheJkr2lW6Ry5G04Q-UhjnnVY3dxyN-186kqfyWUbojHg0_cbJsjAHdPNBdF1s2XaLqqLO

小学一年级数学怎样区分平面图形和立体图形

平面图形和立体图形的区别:

1、概念不一样。平面图形是存在于一个平面上的图形,立体图形是由一个或者多个平面形成的可以存在于现实生活的。

2、形体特点不一样。平面图形是只有一个面,而立体图形有多个面组成,有上面、左面、侧面、下面等。

3、观察角度不一样。平面图形只能从一个角度看,而立体图形是二个,三个甚至是多个角度去看。

扩展资料

1、正方体

有8个顶点,6个面。每个面面积相等(或每个面都由正方形组成)。有12条棱,每条棱长的长度都相等。(正方体是特殊的长方体)

2、长方体

有8个顶点,6个面。每个面都由长方形或相对的一组正方形组成。有12条棱,相对的4条棱的棱长相等。

3、圆柱

上下两个面为大小相同的圆形。有一个曲面叫侧面。侧面沿高展开后为长方形或正方形··沿直线是平行四边形··随意展开是不规则图形。有无数条高,这些高的长度都相等。

平面图形和立体图形区别

平面图形和立体图形区别如下:

1、所含平面数量不同。

平面图形是存在于一个平面上的图形,例如正方形、长方形、圆形等图形,而立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同,如正方体含六个平面,圆柱含有三个面等。

2、性质不同。

根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。由构成原理可知平面图形是构成立体图形的基础。

3、观察角度不同。

平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同,且正方体等的规则立体图形最多可同时观察到三个平面。

4、具有属性不同。

平面图形具有长宽等属性,没有高度,而立体图形具有长宽高的属性。

将一个平面图形旋转成立体图形需要明确什么和什么两个条件

如何区分平面图形和立体图形?

平面只有长宽,立体的有长宽高。

猜你喜欢