谈到有理数,我们很多人都了解,有朋友问有理数的加减混合运算,另外,还有人想问有理数的加法拆分法,这到底是咋回事?其实有理数的加减混合运算呢,接下来,小编就来教教大家有理数的加减混合运算,赶紧来学习一下吧~!
有理数的加减混合运算
有理数加减混合运算的一般步骤是:(1)把减法转化为加法,写成省略加号和括号的形式;(2)应用加法交换律与结合律,简化运算;(3)求出结果.现举例说明加减混合运算中的一些技巧.
有理数加减混合运算步骤
1.将减法统一成( 加法 )。
2.写成省略加号的( 和 )的形式。
3.结合( 运算律 )进行计算。
注意的问题
4.进行减法运算时,首先弄清减法的( 意义 )。
5.将有理数减法转化为加法时,要同时改变两个符号:一是运算符号减号变为加号,二是性质符号即减数变为它的( 相反数 )。
6.加减混合运算应结合运算律和( 运算顺序 )进行运算。
根据有理数的减法法则,加减混合运算可以统一为-----运算,-----和----可以省略
根据有理数的减法法则,加减混合运算可以统一为加法运算,性质符号和括号可以省略
有理数的加法减法法则,和有理数的加减混合运算法则
有理数的加法法则
同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。
一个数与0相加,仍得这个数。
有理数的减法
有理数的减法法则:减去一个数等于加上这个数的相反数,即a-b=a+(-b)。
说明:(1)有理数的减法实质上是把减法运算转化为加法运算,在转化时要同时改变两个符号:一是运算符号由“-”变成“+”,另一个是减数的性质符号;(2)进行减法运算时,首先要弄清减数的符号(是“+”号还是“-”号)。
、有理数的加减混合运算
引入相反数后,有理数的减法运算可以转化为加法运算,因此有理数的加法混合运算可以统一为加法运算。即a+b-c=a+b+(-c)。例如(-8)-(-6)+(-7)-(+3)是有理数的加减混合运算,可以用有理数减法法则,把它写成(-8)+(+6)+(-7)+(-3),统一成只有加法的运算。
有理数的加法减法法则,和有理数的加减混合运算法则
有理数加法法则 有理数加法运算总是涉及两个方面:一方面是确定结果的符号,另一方面是求结果的绝对值。法则:(一)同号两数相加,取相同的符号,并把绝对值相加。(二)异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值。(三)一个数同0相加,仍得这个数。有理数减法法则法则:减去一个数,等于加上这个数的相反数。注:在运用减法法则时,注意两个符号的变化,一是运算符号,减号变成加号,二是性质符号,减数变成它的相反数。有理数的加减混合运算加减混合运算可以通过减法法则,将减法化加法,统一为加法运算。步骤:①减法化加法②省略加号和括号③运用加法法则,加法运算律进行简便运算。
有理数加减混合运算的方法是什么
有理数加减混合运算的一般步骤是:(1)把减法转化为加法,写成省略加号和括号的形式;(2)应用加法交换律与结合律,简化运算;(3)求出结果.现举例说明加减混合运算中的一些技巧.
七年级数学中 有理数的加减混合运算的习题
1.(-2.2)+3.8
简便运算:
2.(-36)-(-25)-(+36) 3.30-15-(-15)-(-7)
4.(10/3)+(-11/4)+(5/6)+(-7/12)
5.(-0.5)+(9/2) +(-19/2)+9.75 初一数学测试(六)
(第一章 有理数 2001、10、18) 命题人:孙朝仁 得分
一、 选择题:(每题3分,共30分)
1.|-5|等于………………………………………………………………( )
(A)-5 (B)5 (C)±5 (D)0.2
2.在数轴上原点及原点右边的点所表示的数是……………………( )
(A)正数 (B)负数 (C)非正数 (D)非负数
3.用代数式表示“ 、b两数积与m的差”是………………………( )
(A) (B) (C) (D)
4.倒数等于它本身的数有………………………………………………( )
(A)1个 (B)2个 (C)3个 (D)无数个
5.在 (n是正整数)这六数中,负数的个数是……………………………………………………………………( )
(A)1个 (B)2个 (C)3个 (D)4个
6.若数轴上的点A、B分别与有理数a、b对应,则下列关系正确的是( )
(A)a<b (B)-a<b (C)|a|<|b| (D)-a>-b
?? ?? ??
7.若|a-2|=2-a,则数a在数轴上的对应点在
(A) 表示数2的点的左侧 (B)表示数2的点的右侧……………( )
(C) 表示数2的点或表示数2的点的左侧
(D)表示数2的点或表示数2的点的左侧
8.计算 的结果是……………………………( )
(A) (B) (C) (D)
9.下列说法正确的是…………………………………………………………( )
(A) 有理数就是正有理数和负有理数(B)最小的有理数是0
(C)有理数都可以在数轴上找到表示它的一个点(D)整数不能写成分数形式
10.下列说法中错误的是………………………………………………………( )
(A) 任何正整数都是由若干个“1”组成
(B) 在自然数集中,总可以进行的运算是加法、减法、乘法
(C) 任意一个自然数m加上正整数n等于m进行n次加1运算
(D)分数 的特征性质是它与数m的乘积正好等于n
二、 填空题:(每题4分,共32分)
11.-0.2的相反数是 ,倒数是 。
12.冰箱冷藏室的温度是3℃,冷冻室的温度比冷藏室的温度低15℃,则冷冻室温度是 ℃。
13.紧接在奇数a后面的三个偶数是 。
14.绝对值不大于4的负整数是 。
15.计算: = 。
16.若a<0,b>0,|a|>|b|,则a+b 0。(填“>”或“=”或“<”号)
17.在括号内的横线上填写适当的项:2x-(3a-4b+c)=(2x-3a)-( )。
18.观察下列算式,你将发现其中的规律: ; ; ; ; ;……请用同一个字母表示数,将上述式子中的规律用等式表示出来: 。
三、 计算(写出计算过程):(每题7分,共28分)
19. 20.
21. (n为正整数)
22.
四、若 。(1)求a、b的值;(本题4分)
(2)求 的值。(本题6分)
第三份
初一数学测试(六)
(第一章 有理数 2001、10、18) 命题人:孙朝仁
班级 姓名 得分
一、 选择题:(每题3分,共30分)
1.|-5|等于………………………………………………………( )
(A)-5 (B)5 (C)±5 (D)0.2
2.在数轴上原点及原点右边的点所表示的数是………………( )
(A)正数 (B)负数 (C)非正数 (D)非负数
3.用代数式表示“ 、b两数积与m的差”是………………( )
(A) (B) (C) (D)
4.-12+11-8+39=(-12-8)+(11+39)是应用了 ( )
A、加法交换律B、加法结合律 C、加法交换律和结合律D、乘法分配律
5.将6-(+3)-(-7)+(-2)改写成省略加号的和应是 ( )
A、-6-3+7-2 B、6-3-7-2 C、6-3+7-2 D、6+3-7-2
6.若|x|=3,|y|=7,则x-y的值是 ( )
A、±4 B、±10 C、-4或-10 D、±4,±10
7.若a×b<0,必有 ( )
A、a>0,b<0 B、a<0,b>0 C、a、b同号 D、a、b异号
8.如果两个有理数的和是正数,积是负数,那么这两个有理数 ( )
A、都是正数 B、绝对值大的那个数正数,另一个是负数
C、都是负数 D、绝对值大的那个数负数,另一个是正数
9.文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在 ( )
A、文具店 B、玩具店 C、文具店西边40米 D、玩具店东边-60米
10.已知有理数 、 在数轴上的位置如图 ?? ?? ??
所示,那么在①a>0,②-b<0,③a-b>0,
④a+b>0四个关系式中,正确的有 ( )
A、4个 B、3个 C、2个 D、1个
二、 判断题:(对的画“+”,错的画“○”,每题1分,共6分)
11.0.3既不是整数又不是分数,因而它也不是有理数。 ( )
12.一个有理数的绝对值等于这个数的相反数,这个数是负数。 ( )
13.收入增加5元记作+5元,那么支出减少5元记作-5元。 ( )
14.若a是有理数,则-a一定是负数。 ( )
15.零减去一个有理数,仍得这个数。 ( )
16.几个有理数相乘,若负因数的个数为奇数个,则积为负。 ( )
三、 填空题:(每题3分,共18分)
17.在括号内填上适当的项,使等式成立:a+b-c+d=a+b-( )。
18.比较大小: │- │ │- │.(填“>”或“<”号)
19.如图,数轴上标出的点中任意相邻两点间的距离都相等,则a的值= 。
?? ?? ?? ?? ?? ?? ?? ?? ??
20.一个加数是0.1,和是-27.9,另一个加数是 。
21.-9,+6,-3三数的和比它们的绝对值的和小 。
22.等式 ×〔(-5)+(-13)〕= 根据的运算律是 。
四、 在下列横线上,直接填写结果:(每题2分,共12分)
23.-2+3= ;24.-27+(-51)= ; 25.-18-34= ;
26.-24-(-17)= ;27.-14×5= ; 28.-18×(-2)= 。
五、 计算(写出计算过程):(29、30每题6分,31、32每题7分,共26分)
29.(-6)-(-7)+(-5)-(+9) 30.
31. 32.(-5)×(-3 )-15×1 +〔 -( )×24〕
六、 下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)。
⑴如果现在的北京时间是7:00,那么现在的纽约时间是多少?
⑵小华现在想给远在巴黎的外公打电话,你认为合适吗?(每小题4分)
*是乘号。
[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)
5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y
有理数的加减混合运算
【【同步达纲练习】
1.选择题:
(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( )
A.-2-3-5-4+3 B.-2+3+5-4+3
C.-2-3+5-4+3 D.-2-3-5+4+3
(2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( )
A.-10 B.-9 C.8 D.-23
(3)-7,-12,+2的代数和比它们的绝对值的和小( )
A.-38 B.-4 C.4 D.38
(4)若 +(b+3)2=0,则b%
有理数的加减混合运算怎么算简单
先化简代数形式
再根据加(减)交换律加数交换前负加数交换
再用加结合律加数负加数别求
再算结
例:
+(-2)-(-3)+(+5)-(+3)-(-4)
=-2+3+5-3+4
=3+5+4-2-3
=(3+5+4)-(2+3)
=12-5
=7
有理数的加减混合运算的知识点二
有理数的加减混合运算的知识点;
【知识点一】
1、有理数的加减乘除混合运算顺序:如无括号则先算乘除,再算加减;有括号的先算括号里面的。
2、算式中有小数的可化为分数,这样利用分数乘除来约分,简化计算。若有带分数则化为假分数。
3、熟练运用乘法交换律、乘法结合律和乘法分配率可以是计算简便。
【知识点二】
有理数加法运算总是涉及两个方面:
一方面是确定结果的符号,另一方面是求结果的绝对值。
有理数的加减混合运算的法则:
1、同号两数相加,取相同的符号,并把绝对值相加
2、异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值
3、一个数同0相加,仍得这个数有理数减法法则法则:减去一个数,等于加上这个数的相反数
注:在运用减法法则时,注意两个符号的变化,一是运算符号,减号变成加号,二是性质符号,减数变成它的相反数有理数的加减混合运算加减混合运算可以通过减法法则,将减法化加法,统一为加法运算步骤:①减法化加法②省略加号和括号③运用加法法则,加法运算律进行简便运算 。
谁给我讲解一下,有理数的加减混合运算,在什么情况下加括号,什么情况下去掉括号。
当一个数,有负号的时候就要加括号正数的时候就不需要加括号