当前位置:首页 > x讯息 >

初一数学上册必背公式

  • x讯息
  • 2022-02-04

讲到上册,大家应该都了解,有朋友问初一数学公式大全,有理数加减乘除,还有人想问初一数学所有公式及概念,这到底是咋回事?实际上求人教版七年级上册数学所有的公式呢,今天给大家说说初一数学上册必背公式,让我们来看看吧。

初一数学上册必背公式

小学数学知识概念公式汇总

小学一年级 九九乘法口诀表.学会基础加减乘.

小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形.

小学三年级 学会乘法交换律,几何面积周长等,时间量及单位.路程计算,分配律,分数小数.

小学四年级 线角自然数整数,素因数梯形对称,分数小数计算.

小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积.

小学六年级 比例百分比概率,圆扇圆柱及圆锥.

必背定义、定理公式

三角形的面积=底×高÷2. 公式 S= a×h÷2

正方形的面积=边长×边长 公式 S= a×a

长方形的面积=长×宽 公式 S= a×b

平行四边形的面积=底×高 公式 S= a×h

梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

内角和:三角形的内角和=180度.

长方体的体积=长×宽×高 公式:V=abh

长方体(或正方体)的体积=底面积×高 公式:V=abh

正方体的体积=棱长×棱长×棱长 公式:V=aaa

圆的周长=直径×π 公式:L=πd=2πr

圆的面积=半径×半径×π 公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高.公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积.公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh

圆锥的体积=1/3底面×积高.公式:V=1/3Sh

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.

分数的乘法则:用分子的积做分子,用分母的积做分母.

分数的除法则:除以一个数等于乘以这个数的倒数.

读懂理解会应用以下定义定理性质公式

一、算术方面

1、加法交换律:两数相加交换加数的位置,和不变.

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.

3、乘法交换律:两数相乘,交换因数的位置,积不变.

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O.

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾.

7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式.

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.

8、什么叫方程式?答:含有未知数的等式叫方程式.

9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式.

学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.

10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数.

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.

15、分数除以整数(0除外),等于分数乘以这个整数的倒数.

16、真分数:分子比分母小的分数叫做真分数.

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.

18、带分数:把假分数写成整数和真分数的形式,叫做带分数.

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.

20、一个数除以分数,等于这个数乘以分数的倒数.

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数.

数量关系计算公式方面

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和 一个加数=和+另一个加数

被减数-减数=差 减数=被减数-差 被减数=减数+差

因数×因数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

有余数的除法: 被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变.例:90÷5÷6=90÷(5×6)

6、 1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米. 1亩=666.666平方米.

1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变.

8、什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积.

10、解比例:求比例中的未知项,叫做解比例.如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.如:y/x=k( k一定)或kx=y

12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系.如:x×y = k( k一定)或k / x = y

百分数:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比.

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.其实,把小数化成百分数,只要把这个小数乘以100%就行了.

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了.

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数.

15、要学会把小数化成分数和把分数化成小数的化发.

16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数.(或几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做最大公约数.)

17、互质数: 公约数只有1的两个数,叫做互质数.

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分.(通分用最小公倍数)

20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分.(约分用最大公约数)

21、最简分数:分子、分母是互质数的分数,叫做最简分数.

分数计算到最后,得数必须化成最简分数.

个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分.个位上是0或者5的数,都能被5整除,即能用5进行约分.在约分时应注意利用.

22、偶数和奇数:能被2整除的数叫做偶数.不能被2整除的数叫做奇数.

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数).

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.1不是质数,也不是合数.

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

29、利率:利息与本金的比值叫做利率.一年的利息与本金的比值叫做年利率.一月的利息与本金的比值叫做月利率.

30、自然数:用来表示物体个数的整数,叫做自然数.0也是自然数.

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数.如3. 141414

32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数.

如3. 141592654

33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数.如3. 141592654……

34、什么叫代数? 代数就是用字母代替数.

35、什么叫代数式?用字母表示的式子叫做代数式.如:3x =ab+c

一般运算规则

1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数

2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3 速度×时间=路程路程÷速度=时间 路程÷时间=速度

4 单价×数量=总价总价÷单价=数量 总价÷数量=单价

5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6 加数+加数=和和-一个加数=另一个加数

7 被减数-减数=差被减数-差=减数 差+减数=被减数

8 因数×因数=积积÷一个因数=另一个因数

9 被除数÷除数=商被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1 正方形 C周长 S面积 a边长

周长=边长×4 C=4a

面积=边长×边长 S=a×a

2 正方体 V:体积 a:棱长

表面积=棱长×棱长×6 S表=a×a×6

体积=棱长×棱长×棱长 V=a×a×a

3 长方形 C周长 S面积 a边长

周长=(长+宽)×2 C=2(a+b)

面积=长×宽 S=ab

4 长方体 V:体积 s:面积 a:长 b: 宽 h:高

表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

体积=长×宽×高 V=abh

5 三角形 s面积 a底 h高

面积=底×高÷2 s=ah÷2

三角形高=面积 ×2÷底三角形底=面积 ×2÷高

6 平行四边形 s面积 a底 h高

面积=底×高 s=ah

7 梯形 s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2 s=(a+b)× h÷2

8 圆形 S面积 C周长 ∏ d=直径 r=半径

周长=直径×∏=2×∏×半径 C=∏d=2∏r

面积=半径×半径×∏

9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长

侧面积=底面周长×高表面积=侧面积+底面积×2

体积=底面积×高体积=侧面积÷2×半径

10 圆锥体 v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

谢谢,如有不全请搜百度文库。

乘法与因式分解

a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

三角不等式

|a+b|≤|a|+|b| |a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解

-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a

根与系数的关系

X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式 b2-4a=0 注:方程有相等的两实根

b2-4ac>0 注:方程有一个实根

b2-4ac<0 注:方程有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理

a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理

b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程

(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程

x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程

y2=2px y2=-2px

x2=2py x2=-2py

直棱柱侧面积

S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积

S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积

S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积

S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式

l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式

V=1/3*S*H

圆锥体体积公式

V=1/3*pi*r2h

斜棱柱体积

V=S'L

注:其中,S'是直截面面积, L是侧棱长

柱体体积公式

V=s*h

圆柱体

V=pi*r2h

圆锥是圆柱的1/3。

圆柱是圆锥的3倍。

分子相同,分母越小分数就大。

分母相同,分子越大分数就小。

上面是分子,下面是分母。

相遇问题

相遇路程=速度和相遇时间

相遇时间=相遇路程速度和

速度和=相遇路程相遇时间

利润与折扣问题

利润=售出价-成本

利润率=利润成本100%=(售出价成本-1)100%

涨跌金额=本金涨跌百分比

利息=本金利率时间

税后利息=本金利率时间(1-20%)

长度单位换算

1千米=1000米 1米=10分米

1分米=10厘米 1米=100厘米

1厘米=10毫米

面积单位换算

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

重量单位换算

1吨=1000 千克

1千克=1000克

1千克=1公斤

时间单位换算

1世纪=100年 1年=12月

大月(31天)有:1\3\5\7\8\10\12月

小月(30天)的有:4\6\9\11月

平年2月28天, 闰年2月29天

平年全年365天, 闰年全年366天

1日=24小时 1时=60分

希望可以帮到你,望采纳!!!

小学六年级数学上册的必背公式

每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

1倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

速度×时间=路程

路程÷速度=时间

路程÷时间=速度

单价×数量=总价

总价÷单价=数量

总价÷数量=单价

工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

加数+加数=和

和-一个加数=另一个加数

被减数-减数=差

被减数-差=减数

差+减数=被减数

因数×因数=积

积÷一个因数=另一个因数

被除数÷除数=商

被除数÷商=除数

商×除数=被除数 小学数学图形计算公式

正方形 c周长 s面积 a边长 周长=边长×4 c=4a 面积=边长×边长 s=a×a

正方体 v体积 a棱长 表面积=棱长×棱长×6 s表=a×a×6 体积=棱长×棱长×棱长 v=a×a×a 3?? 长方形 c周长??s面积 a边长 周长=(长+宽)×2 c=2(a+b) 面积=长×宽 s=ab 4 长方体 v体积 s面积??a长??b 宽 h高 (1)表面积(长×宽+长×高+宽×高)×2 s=2(ab+ah+bh) (2)体积=长×宽×高 v=abh 5?? 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 平行四边形 s面积 a底 h高 面积=底×高 s=ah

梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8?? 圆形 s面积 c周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏?半径 c=∏d=2∏r (2)面积=半径×半径×∏ 9?? 圆柱体 v体积??h高?? s;底面积?? r底面半径 c底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径

圆锥体 v体积 h高 s;底面积 r底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题 非封闭线路上的植树问题主要可分为以下三种情形 ⑴如果在非封闭线路的两端都要植树,那么 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 给满意啊

初中七年级上册数学公式大全

这个是别人的回答,不知道对不对

七年级的全部数学公式

乘法与因式分解

a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)

三角不等式

|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解

-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a

根与系数的关系

X1+X2=-b/a X1*X2=c/a 注:韦达定理

判别式 b2-4a=0 注:方程有相等的两实根

b2-4ac>0 注:方程有一个实根

b2-4ac<0 注:方程有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h

每一级末尾的0不读。

每一级前面的0读。

每一级中间的0,不管有几个零,只读一个。

圆锥是圆柱的1/3。

圆柱是圆锥的3倍。

分子相同,分母越小分数就大。

分母相同,分子越大分数就小。

上面是分子,下面是分母。

相遇问题

相遇路程=速度和相遇时间

相遇时间=相遇路程速度和

速度和=相遇路程相遇时间

利润与折扣问题

利润=售出价-成本

利润率=利润成本100%=(售出价成本-1)100%

涨跌金额=本金涨跌百分比

利息=本金利率时间

税后利息=本金利率时间(1-20%)

长度单位换算

1千米=1000米 1米=10分米

1分米=10厘米 1米=100厘米

1厘米=10毫米

面积单位换算

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

重量单位换算

1吨=1000 千克

1千克=1000克

1千克=1公斤

人民币单位换算

1元=10角

1角=10分

1元=100分

时间单位换算

1世纪=100年 1年=12月

大月(31天)有:1\3\5\7\8\10\12月

小月(30天)的有:4\6\9\11月

平年2月28天, 闰年2月29天

平年全年365天, 闰年全年366天

1日=24小时 1时=60分

1分=60秒 1时=3600秒

每份数×份数=总数 总数÷每份数=份数

速度×时间=路程 路程÷速度=时间

路程÷时间=速度 单价×数量=总价

总价÷单价=数量 总价÷数量=单价

工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 加数+加数=和

和-一个加数=另一个加数 被减数-减数=差

被减数-差=减数 差+减数=被减数

因数×因数=积 积÷一个因数=另一个因数

被除数÷除数=商 被除数÷商=除数

商×除数=被除数

和倍问题

(和+差)÷2=大数 (和-差)÷2=小数

和÷(倍数-1)=小数 小数×倍数=大数

和-小数=大数

差倍问题

差÷(倍数-1)=小数 小数×倍数=大数

小数+差=大数

相遇问题

相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

利润与折扣问题

利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100%

折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%)

加法交换率:a+b=b+a

加法结合率:a+b+c=a+(b+c)

初一数学所有公式及概念

每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6 加数+加数=和 和-一个加数=另一个加数

7 被减数-减数=差 被减数-差=减数 差+减数=被减数

8 因数×因数=积 积÷一个因数=另一个因数

9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1 正方形 C周长 S面积 a边长

周长=边长×4 C=4a

面积=边长×边长 S=a×a

2 正方体 V:体积 a:棱长

表面积=棱长×棱长×6 S表=a×a×6

体积=棱长×棱长×棱长 V=a×a×a

3 长方形 C周长 S面积 a边长

周长=(长+宽)×2 C=2(a+b)

面积=长×宽 S=ab

4 长方体 V:体积 s:面积 a:长 b: 宽 h:高

表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

体积=长×宽×高 V=abh

5 三角形 s面积 a底 h高

面积=底×高÷2 s=ah÷2

三角形高=面积 ×2÷底 三角形底=面积 ×2÷高

6 平行四边形 s面积 a底 h高

面积=底×高 s=ah

7 梯形 s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2 s=(a+b)× h÷2

8 圆形 S面积 C周长 ∏ d=直径 r=半径

周长=直径×∏=2×∏×半径 C=∏d=2∏r

面积=半径×半径×∏ (3.14)

9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长

侧面积=底面周长×高 表面积=侧面积+底面积×2

体积=底面积×高乘体积=侧面积÷2×半径

10 圆锥体 v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

初一上册所有数学公式!对的一定采纳!!!!

第三单元 分数四则混合运算和应用题概念总结

1.分数四则混合运算的顺序与整数四则混合运算的运算顺序相同。在有一级运算和二级运算的计算中,要先算二级运算再算一级运算,即:先乘除后加减。在同级运算中,应按从左到右的顺序依次计算。

2.在分数四则混合运算中,可以应用运算定律使计算简便。

运算定律包括:加法的交换律、加法的结合律、乘法的交换律、乘法的结合律、乘法的分配律。

3.解分数应用题注意事项:与第二单元相同。

第四单元 圆概念总结

1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.

3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r

r = d

9.圆的周长:围成圆的曲线的长度叫做圆的周长。

10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取 3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

11.圆的周长公式:C= d 或C=2 r

12、圆的面积:圆所占面积的大小叫圆的面积。

13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形的面积=长×宽,所以圆的面积= r×r。

14.圆的面积公式:S= r² 或者S= (d 2)²

或者S= (C 2)²

15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S= R²- r²

 或 S= (R²-r²)。(其中R=r+环的宽度.)

18.环形的周长=外圆周长+内圆周长

19.半圆的周长等于圆的周长的一半加直径。

半圆的周长公式:C= d 2+d 或 C= r+2r

20.半圆面积=圆的面积 2  公式为:S= r² 2

21.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。

22.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。

例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,

而面积比是4:9。

23.当一个圆的半径增加a厘米时,它的周长就增加2 a厘米;

当一个圆的直径增加a厘米时,它的周长就增加 a厘米。

24.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.

25.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。

26.扇形弧长公式: L=

扇形的面积公式: S= r²

(n为扇形的圆心角度数,r为扇形所在圆的半径)

27.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

28.有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

有2条对称轴的图形是:长方形

有3条对称轴的图形是:等边三角形

有4条对称轴的图形是:正方形;

有无数条对称轴的图形是:圆、圆环。

29.直径所在的直线是圆的对称轴。

楼主采纳吧~

初一上册的数学公式

平均数问题公式 (一个数+另一个数)÷2

反向行程问题公式 路程÷(大速+小速

同向行程问题公式 路程÷(大速-小速)

行船问题公式 同上

列车过桥问题公式 (车长+桥长)÷车速

工程问题公式 1÷速度和

盈亏问题公式 (盈+亏)÷两次的相差数

利率问题公式 总利润÷成本×100%

中小学数学应用题常用公式

1 每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

2 1倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

3 速度×时间=路程

路程÷速度=时间

路程÷时间=速度

4 单价×数量=总价

总价÷单价=数量

总价÷数量=单价

5 工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6 加数+加数=和

和-一个加数=另一个加数

7 被减数-减数=差

被减数-差=减数

差+减数=被减数

8 因数×因数=积

积÷一个因数=另一个因数

9 被除数÷除数=商

被除数÷商=除数

商×除数=被除数

小学数学图形计算公式

1 正方形

C周长 S面积 a边长

周长=边长×4

C=4a

面积=边长×边长

S=a×a

2 正方体

V:体积 a:棱长

表面积=棱长×棱长×6

S表=a×a×6

体积=棱长×棱长×棱长

V=a×a×a

3 长方形

C周长 S面积 a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4 长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

(2)体积=长×宽×高

V=abh

5 三角形

s面积 a底 h高

面积=底×高÷2

s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高

6 平行四边形

s面积 a底 h高

面积=底×高

s=ah

7 梯形

s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圆形

S面积 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

9 圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10 圆锥体

v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

总数÷总份数=平均数

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

植树问题

1 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

求人教版七年级上册数学所有概念

一、有理数

0既不是正数,也不是负数。

正整数、负整数、0统称为整数。

整数可以看作分母为1的分数.正整数、0负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

原点、正方向、单位长度是数周三要素。

只有符号不同的两个数叫做互为相反数。

0的相反数仍是0.

数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

有理数的加法法则:

1、同号两数相加,取相同的符号,并把绝对值相加;

2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、 一个数同零相加,仍得这个数;

4、两个互为相反数的两个数相加得0。

有理数的减法法则:

减去一个数,等于加上这个数的相反数。

有理数的乘法法则:

1、两数相乘,同号得正,异号得负,并把绝对值相乘;

2、任何数同0相乘,都得0;

3、乘积是1的两个数互为倒数。

有理数的除法法则:

1、除以一个不等于0的数,等于乘以这个数的倒数;

2、两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的

数,都得0。

求n个相同因数的积的运算,叫做乘方。

正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;

0的任何次正整数次幂都是0。

有理数的混合运算顺序:

1先乘方,再乘除,最后加减;

2同级运算,从左到右进行;

3如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

把一个绝对值大于10的数表示成 a×10n 的形式(其中a是整数数位只有一位的数,即1≤|a|<10,n是正整数),这种计数方法叫做科学计数法。

用科学计数法表示一个n位整数,其中10的指数是这个数的整数位数减1。

四舍五入后的近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数

字,都叫做这个数的有效数字。

一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。

二、整式

单项式、多项式、整式的概念

单项式:由数与字母的乘积组成的代数式叫做单项式。单独的一个数或一个字母也是单项式。

多项式:几个单项式的和叫做多项式。

整式:单项式与多项式统称整式。

单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数之和。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中次数最高项的次数,就是这个多项式的次数。

所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项。

同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变。

三、一元一次方程

方程中只含有一个未知数(元),并且未知数的指数是1(次),未知数的式子都是

整式,这样的方程叫做一元一次方程。

等式两边加(或减)同一个数(或式子),结果仍相等。

等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。

把方程中的某一项,改变符号后,从方程的左边(右边)移到右边(左边),这种

变形叫做移项。

卖价=进价+利润

利润=卖价-进价

利润率=利润÷进价×100%

卖价=进价×(1+利润率)

利润=进价×利润率

四、图形

直线

(1)概念:向两方无限延伸的的一条笔直的线。如代数中的数轴,就是一条直线(它只规定了原点、方向和长度单位)。

(2)基本性质:经过两点有一条直线,并且只有一条直线;也可以简单地说“两点确定一条直线”。

(3)特点:①直线没有长短,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。

射线

(1)概念:直线上一点和它一旁的部分叫做射线。

(2)特点:只有一个端点,向一方无限延伸,无法度量。

线段

(1)概念:直线上两点和它们之间的部分叫做线段。线段有两个端点,有长度。

(2)基本性质:两点之间线段最短。

(3)特点:有两个端点,不能向任何一方延伸,可以度量,可以较长短。

线段的中点:把一条线段分成两条相等线段的点。

角的概念:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两

条射线是角的两条边。

角度制及换算:

(1)角度制的概念:以度、分、秒为单位的角的度量制,叫做角度制。

(2)角度制的换算:

1°=60′  1′=60″  1周角=360°  1平角=180°  1直角=90°

(3)换算方法:

把高级单位转化为低级单位要乘进率;把低级单位转化为高级单位要除以进率;

角的平分线:

从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

余角和补角:

(1)余角:如果两个角的和等于90°(直角),那么这两个角互为余角,其中一个角是另

一个角的余角;

(2)补角:如果两个角的和等于180°(平角),那么这两个角互为补角,其中一个角是另一个角的补角;

(3)余角的性质:等角的余角相等;

等角的性质:同角的补角相等。

嘿嘿,我也是父母让打印出来复习用的。

希望能帮到你~

初一到初二上的数学公式

1、正n边形的每个内角都等于(n-2)×180°/n  

2、弧长计算公式:L=n兀R/180  

3、扇形面积公式:S扇形=n兀R^2/360=LR/2  

5、内公切线长=d-(R-r)外公切线长=d-(R+r)  

6、①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)  

7、定理相交两圆的连心线垂直平分两圆的公共弦  

8、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形  

9、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆  

10、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 

11、公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)  

12、平方差公式:a平方-b平方=(a+b)(a-b)  

13、完全平方和公式: (a+b)平方=a平方+2ab+b平方  

14、完全平方差公式: (a-b)平方=a平方-2ab+b平方  

15、两根式: ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]两根式  

15、立方和公式: a^3+b^3=(a+b)(a^2-ab+b^2)  

16、立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)  

17、完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a  

18、根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理  

19、判别式  b2-4ac=0 注:方程有两个相等的实根  b2-4ac>0 注:方程有两个不等的实根  b2-4ac<0 注:方程没有实根,有共轭复数根 

20、|a+b|≤|a|+|b|  |a-b|≤|a|+|b|  |a|≤b<=>-b≤a≤b  |a-b|≥|a|-|b|-|a|≤a≤|a| 

21、某些数列前n项和  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2  

22、2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6  13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 

23、两角和公式  sin(A+B)=sinAcosB+cosAsinB  sin(A-B)=sinAcosB-sinBcosA  

24、两角和公式 cos(A+B)=cosAcosB-sinAsinB  cos(A-B)=cosAcosB+sinAsinB  

24、两角和公式 tan(A+B)=(tanA+tanB)/(1-tanAtanB)  tan(A-B)=(tanAtanB)/(1+tanAtanB)  

25、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)  ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 

26、倍角公式  tan2A=2tanA/(1-tan2A)  ctg2A=(ctg2A-1)/2ctga  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 

27、半角公式  sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)  

28、半角公式 cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)  

29、半角公式 tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA)) 

30、 ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA)) 

31、和差化积  2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

31、  2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)  

32、sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

33、tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcos

34、ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

初一上册数学所有用到的公式。

高斯公式:1+2+3+.......+n=n(n+1)/2 (首项+末项)x项数÷2=和 非负数绝对值 /a /≥0, 完全平方:a平方≥0 a的相反数是:-a x-y的相反数:-(x-y)=y-x x+y 的相反数:-(x+y)=x-y一个数的相反数的相反数是:本身 零的相反数就是零当a>0时 /a/ =正a 当a=0时 /a/=0 当a<0 /a/=负a两个负数,绝对值大的反而小 减去一个数,等于加上这个数的相反数两数相乘,同号得正 ,异号得负,并把绝对值相乘。任何书与0相乘,都得0ab=ba (ab)c=a(bc)几个数相乘有一个因数为0,积就为0分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加:a(b+c)=ab+ac除以一个数等于乘以这个数的倒数,注意:零不能作除数 a÷b=a×1/b=a/b加分交换率:a+b=b+a 乘法分配律:ab=ba代数式的值: 增长了的=原数×增长的百分数 增长到的=原来的+增长的 =原来的+原数×增长律 =原数×(1+增长律)整式的加减:a+(b+c)=a+b+c a-(b+c)=a-b-c 求多边形有几个三角形用边数减去2:(n-2)求多边形有几对对角线用:n(n-3)/2从一条边上一点出发画它与个顶点的线段,可将这个n变形分割成:(n-1)个三角形从n变形内任意一个出发。它与各个顶点的线段,可将n变形割成:n个三角形一周角=360° 一平角=180° 两个角的和等于90°,这两个角互为余角,简称互余, 这两个角的和等于180°,就说这两个角为补角,简称互补1 同位角相等,两直线平行。 2 内错角相等,两直线平行。 3同旁内角互补。两只线平行垂直于同一条直线的两条直线互相平行: 1 两直线平行,同位角相等 2两直线平行,内错角相等 3.两直线平行,同旁内角互补 暂时就这么多了,其中有些是没的公式的,只有文字叙述。如果你平时上课有认真听过,还是多简单的,数学这课主要是你平时弄懂方法就可以了,如果你还有不懂的,就加我QQ:863669133 注明你的来意就可以咯

猜你喜欢