谈到数据,大家应该都不陌生,有人问数据科学与大数据技术,还有人问数据科学与大数据技术,这到底是咋回事?实际上数据科学与大数据技术呢,今天小编整理了数据科学与大数据技术,希望我的回答能够帮到您。
数据科学与大数据技术
专业名称:数据科学与大数据技术
人才培养目标:以大数据为核心研究对象,利用大数据的方法解决具体行业应用问题。
学制:四年;学位:工学或理学学位。
学什么?
数据科学与大数据技术属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。
可以从事的工作有哪些?
重视数据的机构已经越来越多,上到国防部,下到互联网创业公司、金融机构需要通过大数据项目来做创新驱动,需要数据分析或处理岗位也很多;常见的食品制造、零售电商、医疗制造、交通检测等也需要数据分析与处理,如优化库存,降低成本,预测需求等。人才主要分成三大类:大数据系统研发类、大数据应用开发类、大数据分析类。
数据科学与大数据技术专业“ 前(钱)”途无量,学成之后可以从事的职业有:
1、Hadoop大数据开发方向
市场需求旺盛,大数据培训的主体,我们培训的重点
对应岗位:大数据开发工程师、爬虫工程师、数据分析师 等。
2、数据挖掘、数据分析&机器学习方向
学习起点高、难度大,市面上基本没有培训机构在做,后续有计划加入我们课程体系。
对应岗位:数据科学家、数据挖掘工程师、机器学习工程师等
3、大数据运维&云计算方向
市场需求中等,更偏向于Linux云计算学科
对应岗位:大数据运维工程师
三个方向中,大数据开发是基础。以Hadoop开发工程师为例,Hadoop入门月薪已经达到了 8K 以上,工作1年月薪可达到 1.2W 以上,具有2-3年工作经验的hadoop人才年薪可以达到 30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径。
数据科学与大数据技术属于哪个学科
属于计算机,互联网it 这边可以来看看的
想要快速进入大数据行业,参加大数据培训也是一个不错的选择
数据科学与大数据技术属于什么院系
数据科学与大数据技术属于什么院系
数据科学与大数据技术属于计算机专业。
一般就有什么计算机系 信息网络系
不同学校命名不同呀
数据科学与大数据技术
旨在培养具有大数据思维、运用大数据思维及分析应用技术的高层次大数据人才。系统地培养学生掌握大数据应用中的各种典型问题的解决办法,实际提升学生解决实际问题的能力,具有将领域知识与计算机技术和大数据技术融合、创新的能力,能够从事大数据研究和开发应用的高层次人才。

主要课程
C程序设计、数据结构、数据库原理与应用、计算机操作系统、计算机网络、Java语言程序设计、Python语言程序设计,大数据算法、人工智能、应用统计(统计学)、大数据机器学习、数据建模、大数据平台核心技术、大数据分析与处理,大数据管理、大数据实践等课程。
毕业方向
毕业生能在政府机构、企业、公司等从事大数据管理、研究、应用开发等方面的工作。同时可以考取软件工程、计算机科学与技术、应用统计学等专业的研究生或出国深造。
数据科学与大数据技术和大数据管理与应用有什么区别?
大数据应用的目标是普适智能要学好大数据,首先要明确大数据应用的目标,通过大数据应用,面向过去,发现数据规律,归纳已知;面向未来,挖掘数据趋势,预测未知。从而提高人们对事物的理解和决策处置能力,最终实现社会的普适智能。
数据科学(Data Science)可以理解为一个跨多学科领域的,从数据中获取知识的科学方法,技术和系统集合,其目标是从数据中提取出有价值的信息,它结合了诸多领域中的理论和技术,包括应用数学,统计,模式识别,机器学习,人工智能,深度学习,数据可视化,数据挖掘,数据仓库,以及高性能计算等。
数据科学过程:包括原始数据采集,数据预处理和清洗,数据探索式分析,数据计算建模,数据可视化和报表,数据产品和决策支持等。
简言之,一个偏理论,一个偏应用。
本科学的是数据科学与大数据技术,想问问大佬们考研应该考计算机大类的哪个方向比较适合?
软件工程吧。数据科学与大数据技术专业所学的知识与软件工程专业的知识比较相近,考研成功率高,而且软件工程是计算机大类中最受欢迎的。 请采纳哦。
数据科学与大数据技术专业以及未来发展会怎样 ???
“数据科学与大数据技术”专业是近两年才设立的新专业。“数据科学与大数据技术”专业有着很好的就业前景并且就业的宽度广,就业薪资待遇水平高,缺点可能在于专业设立较新,教学课程设置上可能无法跟上大数据人才培养的技能需求。
“数据科学与大数据技术”专业的人才培养方向
分析类岗位
分析类工程师。使用统计模型、数据挖掘、机器学习及其他方法,进行数据清洗、数据分析、构建行业数据分析模型,为客户提供有价值的信息,满足客户需求。
算法工程师。大数据方向,和专业工程师一起从系统应用的角度,利用数据挖掘/统计学习的理论和方法解决实际问题;人工智能方向,根据人工智能产品需求完成技术方案设计及算法设计和核心模块开发,组织解决项目开发过程中的重大技术问题。
研发类岗位
架构工程师。负责Hadoop集群架构设计开发、搭建、管理、运维、调优,从数据采集到数据加工,从数据清洗到数据抽取,从数据统计到数据分析,实现大数据全产业线上的应用分析设计。
开发工程师。基于hadoop、spark等构建数据分析平台,进行设计、开发分布式计算业务,负责机器学习、深度学习领域的开发工作。
运维工程师。负责大数据基础平台的运维,保障平台的稳定可用,参与设计大数据自动化运维、监控、故障处理工具。
管理类岗位
产品经理。负责大数据平台产品的设计工作,主导数据产品的功能规划、体验设计,与研发、数据分析、算法团队紧密合作,挖掘数据价值,形成数据产品,包括部分数据可视化的产品设计等。
运营经理。根据业务特点,结合业务发展需求,设立数据监控模型,搭建数据分析架构,理解业务方向和战略,为业务战略决策、业务方向提供决策支持,竞争分析及建议。
“数据科学与大数据技术”专业的就业前景
人才需求方面,腾讯研究院于2017年12月发布了《2017年全球人工智能人才白皮书》,数据显示,中国592家公司中约有4万位员工,而中国对于人工智能人才的需求数量已经突破百万,人才严重短缺,迫使企业不断降低工作经验门槛,甚至不惜从零培养人才。人工智能人才掌握的技能宽度和深度均在逐渐提高。2017年求职的人工智能人才中,有68%的人掌握至少3种技能,简历中最常出现的技能包括spark、深度学习、算法研究、Hadoop,Python等。而人工智能工程师的招聘主要集中在算法与开发两个大类, 本科学历及以上人才目前是人工智能领域的主力军,同时,就业人群在快速年轻化。
在薪资待遇方面,可参考IT行业类的专业,2016届本科应届毕业生就业薪资最高的10个专业中软件工程、计算机科学与技术、电子信息工程稳进前十,薪资待遇分布在7K到9K之间,IT行业的薪资待遇非常高。人工智能以及大数据技术的岗位人才需求逐步上升,未来可能会发展为就业前景最好的专业之一。
网络与新媒体技术和数据科学与大数据技术,哪一个学起来难度更大??
大学专业计算机专业的难度都差不多,建议你选择一个有钱途的专业,数据科学与大数据技术
读数据科学与大数据技术专业就业前景如何
学技术可以考虑计算机相关的专业,因为现在人人都离不开,社会发展的趋势也告诉我们这个行业的巨大前景,学习这方面的专业将来可从事岗位多,就业薪资高。可选择专业有软件、硬件、网络、设计等等,可以了解后做决定。