讲到等比数列,大多数人都知道,有朋友问等比数列求和公式是什么时候学的,当然了,还有人想问等比数列求积公式公比,这到底是咋回事?事实上等比数列公式通项公式呢,今天小编和大家说说等比数列的所有公式,以供大家参考借鉴!
等比数列的所有公式
一、等比数列求和公式推导
由等比数列定义
a2=a1*q
a3=a2*q
a(n-1)=a(n-2)*q
an=a(n-1)*q 共n-1个等式两边分别相加得
a2+a3+...+an=[a1+a2+...+a(n-1)]*q
即 Sn-a1=(Sn-an)*q,即(1-q)Sn=a1-an*q
当q≠1时,Sn=(a1-an*q)/(1-q) (n≥2)
当n=1时也成立.
当q=1时Sn=n*a1
所以Sn= n*a1(q=1) ;(a1-an*q)/(1-q) (q≠1)。
二、等比数列求和公式推导
错位相减法
Sn=a1+a2 +a3 +...+an
Sn*q= a1*q+a2*q+...+a(n-1)*q+an*q= a2 +a3 +...+an+an*q
以上两式相减得(1-q)*Sn=a1-an*q
三、等比数列求和公式推导
数学归纳法
证明:(1)当n=1时,左边=a1,右边=a1·q0=a1,等式成立;
(2)假设当n=k(k≥1,k∈N*)时,等式成立,即ak=a1qk-1;
当n=k+1时,ak+1=ak·q=a1qk=a1·q(k+1)-1;
这就是说,当n=k+1时,等式也成立;
由(1)(2)可以判断,等式对一切n∈N*都成立。
求和公式
求和公式推导:
(1)Sn=a1+a2+a3+...+an(公比为q)
(2)qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1)
(3)Sn-qSn=(1-q)Sn=a1-a(n+1)
(4)a(n+1)=a1qn
(5)Sn=a1(1-qn)/(1-q)(q≠1)
相关应用:
远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中,下一层灯数是上一层灯数的2倍,则塔的顶层共有几盏灯。
每层塔所挂的灯的数量形成一个等比数列,公比q=2,我们设塔的顶层有a1盏灯。7层塔一共挂了381盏灯,S7=381,按照等比求和公式, 那么有a1乘以1-2的7次方,除以1-2,等于381.能解出a1等于3. 尖头必有3盏灯。
等比数列的公式
(1) 等比数列:a (n+1)/an=q (n∈N)。
(2) 通项公式:an=a1×q^(n-1);
推广式:an=am×q^(n-m);
(3) 求和公式:Sn=n×a1 (q=1)
Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为比值,n为项数)
(4)性质:
①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;
②在等比数列中,依次每 k项之和仍成等比数列.
③若m、n、q∈N,且m+n=2q,则am×an=aq^2
(5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".
(6)在等比数列中,首项a1与公比q都不为零.
注意:上述公式中an表示等比数列的第n项。
等比数列求和公式推导: Sn=a1+a2+a3+...+an(公比为q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1)
Sn-q*Sn=a1-a(n+1)
(1-q)Sn=a1-a1*q^n
Sn=(a1-a1*q^n)/(1-q)
Sn=a1(1-q^n)/(1-q)
等比数列的中项公式
等比中项:当r满足p+q=2r时,那么则有
等差中项:G=(a+b)除以2
等比数列的通项公式是:
若通项公式变形为
等比求和:
①当q≠1时,
②当q=1时,
在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
等比数列前n项之和:
①当q≠1时,
②当q=1时,
在等比数列中,首项a1与公比q都不为零.
注意:上述公式中a^n表示A的n次方。
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息和本金加在一起算作本金,
再计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金×(1+利率)^存期
等比数列求积公式的推导
T(n)=a1·(a1q)·(a1q²)·(a1q³)...(a1q^(n-1))
=a1^n·q^(1+2+3+……n-1)
=a1^n·q^(n(n-1))/2
等比数列中求公比q的公式有哪些?这里的q最简便的求法是?
等比数列中求公比q的公式
1、等比数列中的等比中项公式,
已知前项a,后项b,中项G,则q=G/a=b/G;
2、等比数列通项公式,
an=a1q^(n-1),已知,a1,an和n,
则q^(n-1)= an/a1,
∴q=(an/a1)^[1/(n-1);
3、等比数列前n项和公式,
(1)Sn=a1(1-q^n)/(1-q),q≠1,已知Sn,a1和n,
则(1-q^n)/(1-q)=Sn/a1,搜索
用尝试—逐步逼近法解这个高次方程,求得q的值。
(2))Sn=a1(1-anq)/(1-q),已知Sn,a1和anq
(1-q)=a1(1-anq)/Sn
∴q=1-a1(1-anq)/Sn。
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。
这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。
等比数列求和公式
等比数列求和公式:
(1)q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
(2)q=1时,Sn=na1。(a1为首项,an为第n项,q为等比)
Sn=a1(1-q^n)/(1-q)的推导过程:
Sn=a1+a2+……+an
q*Sn=a1*q+a2*q+……+an*q=a2+a3+……+a(n+1)
Sn-q*Sn=a1-a(n+1)=a1-a1*q^n
(1-q)*Sn=a1*(1-q^n)
Sn=a1*(1-q^n)/(1-q)
等比数列的一些性质:
(1)若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)若“G是a、b的等比中项”则“G^2=ab(G≠0)”。
(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。
等比数列前n项和公式有两个,第二个是什么?
第一个公式:
第二个公式:
等比数列求和公式是求等比数列之和的公式。如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。注:q=1 时,an为常数列。利用等比数列求和公式可以快速的计算出该数列的和。
等比数列求和公式
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。
(1)等比数列的通项公式是:
若通项公式变形为
(2) 任意两项
(3)从等比数列的定义、通项公式、前n项和公式可以推出:
(4)等比中项:当r满足p+q=2r时,那么则有
(5) 等比求和:
①当q≠1时,
②当q=1时,
在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
等比数列是指如果一个 数列从第2项起,每一项与它的前一项的 比值等于同一个常数的一种数列,常用G、P表示。
这个常数叫做等比数列的 公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,a n为 常数列。
等比数列前n项和公式
等比数列前n项和公式:Sn =a1(1-q^n)/(1-q)。
推导如下:
因为an = a1q^(n-1)
所以Sn = a1+a1*q^1+...+a1*q^(n-1) (1)
qSn =a1*q^1+a1q^2+...+a1*q^n (2)
(1)-(2)注意(1)式的第一项不变。
把(1)式的第二项减去(2)式的第一项。
把(1)式的第三项减去(2)式的第二项。
以此类推,把(1)式的第n项减去(2)式的第n-1项。
(2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。
于是得到
(1-q)Sn = a1(1-q^n)
即Sn =a1(1-q^n)/(1-q)。
等比数列前n项和性质
①若 m、n、p、q∈N,且m+n=p+q,则aman=apaq。
②在等比数列中,依次每 k项之和仍成等比数列。
③若m、n、q∈N,且m+n=2q,则am×an=(aq)^2。
④ 若G是a、b的等比中项,则G²=ab(G ≠ 0)。
⑤在等比数列中,首项a1与公比q都不为零。
⑥在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为q^(k+1)。
⑦当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列。